What a Fish Knows: The Inner Lives of Our Underwater Cousins

What a Fish Knows: The Inner Lives of Our Underwater Cousins

by Jonathan Balcombe


$14.40 $16.00 Save 10% Current price is $14.4, Original price is $16. You Save 10%.
View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, February 27

Product Details

ISBN-13: 9780374537098
Publisher: Farrar, Straus and Giroux
Publication date: 06/06/2017
Pages: 304
Sales rank: 138,720
Product dimensions: 5.40(w) x 8.10(h) x 0.90(d)

About the Author

Jonathan Balcombe is the director of animal sentience at the Humane Society Institute for Science and Policy and the author of four books, including Second Nature and Pleasurable Kingdom. A popular commentator, he has appeared on The Diane Rehm Show, the BBC, and the National Geographic Channel, and in several documentaries, and is a contributor of features and opinions to The New York Times, The Washington Post, The Wall Street Journal, Nature, and other publications. He lives in Maryland. Find him on Facebook, follow him on Twitter, and visit his website.

Read an Excerpt

What a Fish Knows

The Inner Lives of Our Underwater Cousins

By Jonathan Balcombe

Farrar, Straus and Giroux

Copyright © 2016 Jonathan Balcombe
All rights reserved.
ISBN: 978-0-374-71433-8



We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

— T. S. Eliot

What we casually refer to as "fish" is in fact a collection of animals of fabulous diversity. According to FishBase — the largest and most often consulted online database on fishes — 33,249 species, in 564 families and 64 orders, had been described as of January 2016. That's more than the combined total of all mammals, birds, reptiles, and amphibians. When we refer to "fish" we are referring to 60 percent of all the known species on Earth with backbones.

Almost all modern fishes are members of one of two major groups: bony fishes and cartilaginous fishes. Bony fishes, scientifically termed teleosts (from the Greek teleios = complete, and osteon = bone), make up the great majority of fishes today, numbering about 31,800 species, including such familiar ones as salmons, herrings, basses, tunas, eels, flounders, goldfishes, carps, pikes, and minnows. Cartilaginous fishes, or chondrichthyans (chondr = cartilage, and ichthys = fish), number about 1,300 species, including sharks, rays, skates, and chimaeras. Members of both groups have all ten body systems of the land-dwelling vertebrates: skeletal, muscular, nervous, cardiovascular, respiratory, sensory, digestive, reproductive, endocrine, and excretory. A third distinct group of fishes is the jawless fishes, or agnathans (a = without, and gnatha = jaws), a small division of about 115 species comprising lampreys and hagfishes.

We conveniently classify animals with backbones into five groups: fishes, amphibians, reptiles, birds, and mammals. This is misleading because it fails to represent the profound distinctions among fishes. The bony fishes are at least as evolutionarily distinct from the cartilaginous fishes as mammals are from birds. A tuna is actually more closely related to a human than to a shark, and the coelacanth — a "living fossil" first discovered in 1937 — sprouted closer to us than to a tuna on the tree of life. So there are at least six major vertebrate groups if one counts the cartilaginous fishes.

The illusion of relatedness among all fishes is partly attributable to the constraints of evolving to move efficiently in water. The density of water is about 800 times greater than that of air, so aquatic living has, in vertebrates, tended to favor streamlined shapes, muscular bodies, and flattened appendages (fins) that generate forward propulsion while minimizing drag.

Living in a denser medium also greatly reduces the pull of gravity. The buoyant effect of water frees aquatic organisms from the ravages of weight on terrestrial creatures. Thus, the largest animals — the whales — live in water, not on land. These factors also help explain the small relative brain size (the ratio of brain weight to body weight) of most fishes, which has been used against them in our cerebrocentric view of other life forms. Fishes benefit from having large, powerful muscles to propel them through water, which is more resistant than air, and living in a practically weightless environment means there is no premium on limiting body size relative to brain size.

In any event, brain size is only marginally meaningful in terms of cognitive advancement. As the author Sy Montgomery notes in an essay on octopus minds, it is well known in electronics that anything can be miniaturized. A small squid can learn mazes faster than dogs do, and a small goby fish can memorize in one trial the topography of a tide pool by swimming over it at high tide — a feat few if any humans could achieve.

The earliest fishlike creatures arose in the Cambrian period, some 530 million years ago. They were small and not very exciting. The big breakthrough in the evolution of fishes (and all their descendants) was the appearance of jaws about 90 million years later in the Silurian period. Jaws allowed these pioneer vertebrates to grab and break up food items and to expand their heads to powerfully suck in prey, which greatly extended the available dinner menu. We might also think of jaws as nature's first Swiss Army knife, for they come with other functions, including manipulating objects, digging holes, carrying material to build nests, transporting and protecting young, transmitting sounds, and communicating (as in, don't come any closer or I'll bite you). Having jaws set the stage for an explosion of piscine life during the Devonian period — also known as "the age of fishes" — including the first super-predators. Most of the Devonian fishes were placoderms (plate-skinned), having heavy, bony armor over the head end and a cartilaginous skeleton. The largest placoderms were formidable. Some species of Dunkleosteus and Titanichthys measured well over thirty feet. They had no teeth, but could shear and crush with two pairs of sharp bony plates forming the jaws. Their fossils are often found with boluses of semi-digested fish bones, suggesting that they regurgitated these in the manner of modern owls.

Although they all went out with the Devonian and have been gone for over 300 million years, nature was kind to the placoderms in preserving some specimens so delicately that paleontologists have been able to deduce some intriguing facets of their lives. One particularly revealing find, from the Gogo fossil sites of Western Australia, is Materpiscis attenboroughi (translation: Attenborough's mother fish), named for the iconic British nature documentary presenter David Attenborough, who waxed enthusiastic over this species in his 1979 documentary series Life on Earth. This perfectly preserved 3-D specimen allows careful peeling away of layers to reveal the insides of the fish. And what should show up there but a well-developed baby Materpiscis attenboroughi attached to its mother by an umbilical cord. This discovery rocked the evolutionary boat by setting back the origins of internal fertilization by 200 million years. It also eroticized the lives of early fishes. As far as we know there is only one way to achieve internal fertilization: sex with an intromittent organ. So it appears that fishes were the first to enjoy "the fun kind" of sex. About this discovery and John Long, the Australian paleontologist who brought it to light, Attenborough expressed ambivalence during a public lecture: "This is the first known example of any vertebrate copulating in the history of life ... and he names it after me."

Sex notwithstanding, the bony fishes, which arose about the same time as the placoderms, had a brighter future. Although they suffered major losses during the third great extinction that closed out the Permian period, they steadily diversified over the next 150 million years of the Triassic, Jurassic, and Cretaceous periods. Then, about 100 million years ago, they truly began to flourish. From that time to today the number of known families of bony fishes has more than quintupled. Fossil records do not divulge their secrets willingly, however, so there may be many earlier fish families still hidden in the rocks.

Like their bony counterparts, the cartilaginous fishes also steadily recovered from the Permian setback, albeit without the explosive diversification of later times. As far as we know, there are more kinds of sharks and rays today than at any point in history. And we're beginning to discover that their real lives belie their pugnacious reputation.

Diverse and Versatile

Because their lives are more difficult to observe than those of most terrestrial animals, fishes are not easily fathomed. According to the National Oceanic and Atmospheric Administration, less than 5 percent of the world's oceans have been explored. The deep sea is the largest habitat on Earth, and most of the animals on this planet live there. A seven-month survey using echo soundings of the mesopelagic zone (between 100 and 1,000 meters — 330 to 3,300 feet — below the ocean surface), published in early 2014, concluded that there are between ten and thirty times more fishes living there than was previously thought.

And why not? You might have encountered the popular notion that living at great depths is a terrible hardship for the creatures there. It's a shallow idea, for surely deep-sea creatures are no more inconvenienced by the enormous pressure of the overlying ocean than we are by the approximately ten-tons-per-square-meter pressure (often expressed as 14.7 pounds per square inch) of the atmosphere above us. As the ocean ecologist Tony Koslow explains in his book The Silent Deep, water is relatively incompressible, so deep-sea pressures have less impact than we usually think, because pressure from within the organism is about the same as that on the outside.

Technology is just beginning to afford us a glimpse of the ocean depths, but even in reachable habitats many species remain undiscovered. Between 1997 and 2007, 279 new species of fishes were found in Asia's Mekong River basin alone. The year 2011 saw the discovery of four shark species. Given the current rate, experts predict the total count of all fishes will level off at around 35,000. With the advance of techniques for distinguishing species at the genetic level, I think it could be many thousands more than that. When I studied bats as a graduate student in the late 1980s, 800 species had been identified. Today, the count has ballooned to 1,300.

From diversity springs variety, and from the rich variety of fishdom spring some noteworthy superlatives and bizarre life-history patterns. The smallest fish — indeed, the smallest vertebrate — is a tiny goby of one of the Philippine lakes of Luzon. Adult Pandaka pygmaea are only a third of an inch in length and weigh about 0.00015 of an ounce. If you were to put 300 of them on a scale they wouldn't equal the weight of an American penny.

At less than half an inch, some male deep-sea anglerfishes are not much bigger, but what they lack in size they make up for in the sheer audacity of their mode of existence. On finding a female, males of some deep-sea anglerfish species latch their mouths onto her body and stay there for the remainder of their lives. It doesn't matter much where they fix their bite on the female — it could be on her abdomen or her head — they eventually become fused to her. Many times smaller, the male resembles little more than a modified fin, living off her blood supply and fertilizing her intravenously. One female may end up with three or more males sprouting from her body like vestigial limbs.

It looks like a lurid form of sexual harassment; scientists have called it sexual parasitism. But the origins of this unconventional mating system are not so ignoble. It is estimated that female deep-sea anglerfishes occur at a density of about one per 800,000 cubic meters (28 million cubic feet) of water, which means a male is searching for a football-size object in a darkened space about the volume of a football stadium. Thus, it is desperately hard for anglerfishes to find each other in the vast darkness of the abyss, making it wise to hang on to your partner if you find one. At the time that Peter Greenwood and J. R. Norman revised A History of Fishes in 1975, no free-swimming adult male anglerfish had been found, leading ichthyologists to speculate that the only alternative to successful latching is death. But the University of Washington's Ted Pietsch — curator of fishes at the Burke Museum of Natural History and Culture, and the world's leading authority on deep-sea anglerfishes — tells me that there are now hundreds of (formerly) free-living males in specimen collections around the world.

In exchange for the male being the ultimate couch potato, the female never has to wonder where her mate is on a Saturday evening. It turns out that some males do indeed amount to little more than an appendage.

Another fish superlative is their fecundity, which is also unmatched among vertebrates. A single ling, five feet long and weighing fifty-four pounds, had 28,361,000 eggs in her ovaries. Even that pales compared to the 300 million eggs carried by an ocean sunfish, the largest of all bony fishes. That such a grand creature can be the product of such a paltry parental investment as a teeny egg released into the water column might contribute to the common bias that fishes are unworthy of our consideration. But it bears reminding that all living things start from a single cell. And as we'll see in the section on "Parenting Styles," parental care is well developed in many fishes.

From its humble beginnings as an egg smaller than this letter "o," a mature adult ling can grow to be close to six feet long, and it is another superlative of fishes that they can increase so much in size from the start of their independent life cycle. But the growth champion among vertebrates may be the pointed-tailed ocean sunfish. While not streamlined (the family name, Molidae, refers to their millstone shape), they grow from one-tenth of an inch to ten feet in length, and can weigh 60 million times more as an adult.

Sharks lie at the opposite end of the spectrum of fish fecundity. Some species reproduce at a rate of only one baby a year. And that's only after they reach sexual maturity, which for some species can take a quarter century or more. In parts of their range, spiny dogfish sharks — a heavily fished species that you might have dissected in a college biology course — average thirty-five years old before they are ready to breed. Sharks have a placental structure as complex as that of mammals. Pregnancies are few and far between, and gestation can be lengthy. Frilled sharks carry their babies for over three years, the longest known pregnancy in nature. I sure hope they don't get morning sickness.

Dogfishes can't fly, nor can any other fishes, but they just might be the world's superlative for gliding. Best known of these are the flying fishes, of which there are about seventy species inhabiting the surfaces of the open ocean. Flying fishes have greatly enlarged pectoral fins that function as wings. In preparation for launch, they can reach speeds of forty miles per hour. Once airborne, the lower lobe of the tail may be dipped into the water and used as a supercharger to extend flights to 1,200 feet or more. Flights are usually just above the surface, but sometimes gusts of wind carry these aerialists fifteen to twenty feet high, which may explain why they sometimes land on ship decks. I wonder if the respiratory limitations of being a water breather have kept flying fishes from becoming truly flapping their "wings" for fully sustained flight? Fishes of several other types also launch themselves into the air, including the characins of South America and Africa, and — never mind that their name sounds more like a circus act — the flying gurnards.

Speaking of superlatives, and names, surely one of the longest belongs to Hawaii's state fish, the rectangular triggerfish, known by the locals as humuhumunukunukuapua'a (translation: the fish that sews with a needle and grunts like a pig). Perhaps the award for least flattering name should go to an anglerfish dubbed the hairy-jawed sack-mouth, and for most preposterous to the sarcastic fringehead. For the title of crudest, I nominate a small coastal dweller, the slippery dick (Halichoeres bivittatus).

But really, the most exciting breaking news on fishes is the steady stream of discoveries on how they think, feel, and live their lives. Scarcely a week now passes without a revealing new discovery of fish biology and behavior. Careful observations on reefs are uncovering nuanced social dynamics of cleaner–client fish mutualisms that defy the human conceit that fishes are dim-witted pea brains and slaves to instinct. And the notorious three-second fish memory has been debunked by simple laboratory investigations. In the pages ahead we'll explore how fishes are not just sentient, but aware, communicative, social, tool-using, virtuous, even Machiavellian.

Lowly Not

Among the vertebrate animals — mammals, birds, reptiles, amphibians, and fishes — it is the fishes that are the most alien to our sensibilities. Lacking detectable facial expressions and appearing mute, fishes are more easily dismissed than our fellow air breathers. Their place in human culture falls almost universally into two entwined contexts: (1) something to be caught, and (2) something to be eaten. Hooking and yanking them from the water has not just been seen as benign but as a symbol of all that's good about life. Fishing appears gratuitously in advertising, and the logo of one of America's most beloved film production studios, DreamWorks, features a Tom Sawyer-esque boy relaxing with a fishing pole. You may have met self-professed vegetarians who nonetheless eat fishes, as if there were no moral distinction between a cod and a cucumber.


Excerpted from What a Fish Knows by Jonathan Balcombe. Copyright © 2016 Jonathan Balcombe. Excerpted by permission of Farrar, Straus and Giroux.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents


Title Page,
Copyright Notice,
What a Fish Sees,
What a Fish Hears, Smells, and Tastes,
Navigation, Touch, and Beyond,
Pain, Consciousness, and Awareness,
From Stress to Joy,
Fins, Scales, and Intelligence,
Fins, Scales, and Intelligence,
Tools, Plans, and Monkey Minds,
Suspended Together,
Social Contracts,
Cooperation, Democracy, and Peacekeeping,
Sex Lives,
Parenting Styles,
Also by Jonathan Balcombe,
A Note About the Author,

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews

What a Fish Knows: The Inner Lives of Our Underwater Cousins 4.5 out of 5 based on 0 ratings. 4 reviews.
MontzieW 7 months ago
What a Fish Knows by Jonathan Balcombe and narrated by Graham Winton is a delightful and very informative book on fish. It explains how fish can feel pain, probably pleasure too, can plan, remember, scheme, communicate, and think! They have preferences, can be trained, seem to enjoy certain activities or people over others, and they use tools. I am a vegetarian and I don't eat fish due to this reason but it is nice to hear the science behind it. I learned so much in here too! Wow! How different fish mate, communicate, use tools, and more! In the end, the author discusses the fishing industry today...ugh! I recommend this to anyone and everyone! So heartwarming all the things the little fish can do and no one seems to know about!
jmgallen More than 1 year ago
“What A Fish Knows” is a broad scoped study of the senses, intelligence and habits of fish who inhabit fresh and sea water, written in laymen’s language. The theme of this work is that, contrary to popular belief, fish do sense pain and, to some degree, emotions. He concludes that fish are individuals, that they display learned behavior and seem to recognize and respond to particular humans. He explores the among fish and their ability to recognize danger and opportunity. The author concludes that fish are, in their actions and habits, more like us that we recognize. Author Jonathan Balcombe has crafted a tome that will raise the readers’ awareness of underwater creatures. He may make us think again before we go fishing or place our dinner order. He illustrates problems with fish farming that may not be the perfect answer to the rising demand for seafood products. “What A Fish Knows” is an engaging and educational read for anyone interested in the underwater world.
Anonymous More than 1 year ago
I have often thought about fish and their lives. This book is actually a fun read if you are eager to learn something you possibly might never know. There is so much more than one can imagine about them. I haven’t finished the book yet but I will. It’s very interesting.
Anonymous More than 1 year ago