Groupes algébriques semi-simples en dimension cohomologique ?2: Semisimple algebraic groups in cohomological dimension ?2

La théorie des groupes algébriques sur un corps arbitraire est l’une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable ≤2  et la cohomologie galoisienne d’iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l’annulation de la cohomologie galoisienne d’un groupe semi-simple simplement connexe.
Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s’applique à la classification des groupes semi-simples.

The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension &hat; to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.


1133226657
Groupes algébriques semi-simples en dimension cohomologique ?2: Semisimple algebraic groups in cohomological dimension ?2

La théorie des groupes algébriques sur un corps arbitraire est l’une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable ≤2  et la cohomologie galoisienne d’iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l’annulation de la cohomologie galoisienne d’un groupe semi-simple simplement connexe.
Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s’applique à la classification des groupes semi-simples.

The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension &hat; to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.


29.99 In Stock
Groupes algébriques semi-simples en dimension cohomologique ?2: Semisimple algebraic groups in cohomological dimension ?2

Groupes algébriques semi-simples en dimension cohomologique ?2: Semisimple algebraic groups in cohomological dimension ?2

by Philippe Gille
Groupes algébriques semi-simples en dimension cohomologique ?2: Semisimple algebraic groups in cohomological dimension ?2

Groupes algébriques semi-simples en dimension cohomologique ?2: Semisimple algebraic groups in cohomological dimension ?2

by Philippe Gille

eBook1ère éd. 2019 (1ère éd. 2019)

$29.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

La théorie des groupes algébriques sur un corps arbitraire est l’une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable ≤2  et la cohomologie galoisienne d’iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l’annulation de la cohomologie galoisienne d’un groupe semi-simple simplement connexe.
Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s’applique à la classification des groupes semi-simples.

The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension &hat; to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.



Product Details

ISBN-13: 9783030172725
Publisher: Springer International Publishing
Publication date: 05/24/2019
Series: Lecture Notes in Mathematics , #2238
Sold by: Barnes & Noble
Format: eBook
File size: 8 MB
Language: French

Table of Contents

Préface.- 1 Généralités.- 2 Groupes réductifs.- 3 Sous-groupes des groupes algébriques, déploiement.- 4 Dimension cohomologique séparable.- 5 Tores algébriques, Conjecture I et groupes de normes.- 6 Conjecture II, le cas quasi–déployé.-  7 Groupes classiques.- 8 Groupes exceptionnels.- 9 Applications.- Appendice : Indices de Tits.- Bibliographie.- Index.
From the B&N Reads Blog

Customer Reviews