Performance Evaluation of Vision Algorithms on FPGA
The modern FPGAs enable system designers to develop high-performance computing (HPC) applications with a large amount of parallelism. Real-time image processing is such a requirement that demands much more processing power than a conventional processor can deliver. In this research, we implemented software and hardware based architectures on FPGA to achieve real-time image processing. Furthermore, we benchmark and compare our implemented architectures with existing architectures. The operational structures of those systems consist of on-chip processors or custom vision coprocessors implemented in a parallel manner with efficient memory and bus architectures. The performance properties such as the accuracy, throughput and efficiency are measured and presented. According to results, FPGA implementations are faster than the DSP and GPP implementations for algorithms which can exploit a large amount of parallelism. Our image pre-processing architecture is nearly two times faster than the optimized software implementation on an Intel Core 2 Duo GPP. However, because of the higher clock frequency of DSPs/GPPs, the processing speed for sequential computations on on-chip processors in FPGAs is slower than on DSPs/GPPs. These on-chip processors are well suited for multi-processor systems for software level parallelism. Our quad-Microblaze architecture achieved 75-80% performance improvement compared to its single Microblaze counterpart. Moreover, the quad-Microblaze design is faster than the single-powerPC implementation on FPFA. Therefore, multi-processor architecture with customised coprocessors are effective for implementing custom parallel architecture to achieve real time image processing.
1102735479
Performance Evaluation of Vision Algorithms on FPGA
The modern FPGAs enable system designers to develop high-performance computing (HPC) applications with a large amount of parallelism. Real-time image processing is such a requirement that demands much more processing power than a conventional processor can deliver. In this research, we implemented software and hardware based architectures on FPGA to achieve real-time image processing. Furthermore, we benchmark and compare our implemented architectures with existing architectures. The operational structures of those systems consist of on-chip processors or custom vision coprocessors implemented in a parallel manner with efficient memory and bus architectures. The performance properties such as the accuracy, throughput and efficiency are measured and presented. According to results, FPGA implementations are faster than the DSP and GPP implementations for algorithms which can exploit a large amount of parallelism. Our image pre-processing architecture is nearly two times faster than the optimized software implementation on an Intel Core 2 Duo GPP. However, because of the higher clock frequency of DSPs/GPPs, the processing speed for sequential computations on on-chip processors in FPGAs is slower than on DSPs/GPPs. These on-chip processors are well suited for multi-processor systems for software level parallelism. Our quad-Microblaze architecture achieved 75-80% performance improvement compared to its single Microblaze counterpart. Moreover, the quad-Microblaze design is faster than the single-powerPC implementation on FPFA. Therefore, multi-processor architecture with customised coprocessors are effective for implementing custom parallel architecture to achieve real time image processing.
25.95 In Stock
Performance Evaluation of Vision Algorithms on FPGA

Performance Evaluation of Vision Algorithms on FPGA

by Mahendra Gunathilaka Samarawickrama
Performance Evaluation of Vision Algorithms on FPGA

Performance Evaluation of Vision Algorithms on FPGA

by Mahendra Gunathilaka Samarawickrama

Paperback

$25.95 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The modern FPGAs enable system designers to develop high-performance computing (HPC) applications with a large amount of parallelism. Real-time image processing is such a requirement that demands much more processing power than a conventional processor can deliver. In this research, we implemented software and hardware based architectures on FPGA to achieve real-time image processing. Furthermore, we benchmark and compare our implemented architectures with existing architectures. The operational structures of those systems consist of on-chip processors or custom vision coprocessors implemented in a parallel manner with efficient memory and bus architectures. The performance properties such as the accuracy, throughput and efficiency are measured and presented. According to results, FPGA implementations are faster than the DSP and GPP implementations for algorithms which can exploit a large amount of parallelism. Our image pre-processing architecture is nearly two times faster than the optimized software implementation on an Intel Core 2 Duo GPP. However, because of the higher clock frequency of DSPs/GPPs, the processing speed for sequential computations on on-chip processors in FPGAs is slower than on DSPs/GPPs. These on-chip processors are well suited for multi-processor systems for software level parallelism. Our quad-Microblaze architecture achieved 75-80% performance improvement compared to its single Microblaze counterpart. Moreover, the quad-Microblaze design is faster than the single-powerPC implementation on FPFA. Therefore, multi-processor architecture with customised coprocessors are effective for implementing custom parallel architecture to achieve real time image processing.

Product Details

ISBN-13: 9781599423739
Publisher: Dissertation.Com
Publication date: 12/03/2010
Pages: 56
Product dimensions: 6.69(w) x 9.61(h) x 0.12(d)
From the B&N Reads Blog

Customer Reviews