Applications of Nonlinear Fiber Optics
Applications of Nonlinear Fiber Optics, Third Edition presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The book's chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. This book is an ideal reference for R&D engineers working on developing next generation optical components, scientists involved with research on fiber amplifiers and lasers, graduate students, and researchers working in the fields of optical communications and quantum information. - Presents the only book on how to develop nonlinear fiber optic applications - Describes the latest research on nonlinear fiber optics - Demonstrates how nonlinear fiber optics principles are applied in practice
1117931554
Applications of Nonlinear Fiber Optics
Applications of Nonlinear Fiber Optics, Third Edition presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The book's chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. This book is an ideal reference for R&D engineers working on developing next generation optical components, scientists involved with research on fiber amplifiers and lasers, graduate students, and researchers working in the fields of optical communications and quantum information. - Presents the only book on how to develop nonlinear fiber optic applications - Describes the latest research on nonlinear fiber optics - Demonstrates how nonlinear fiber optics principles are applied in practice
150.0 In Stock
Applications of Nonlinear Fiber Optics

Applications of Nonlinear Fiber Optics

by Govind P. Agrawal
Applications of Nonlinear Fiber Optics

Applications of Nonlinear Fiber Optics

by Govind P. Agrawal

eBook

$150.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Applications of Nonlinear Fiber Optics, Third Edition presents sound coverage of the fundamentals of lightwave technology, along with material on pulse compression techniques and rare-earth-doped fiber amplifiers and lasers. The book's chapters include information on fiber-optic communication systems and the ultrafast signal processing techniques that make use of nonlinear phenomena in optical fibers. This book is an ideal reference for R&D engineers working on developing next generation optical components, scientists involved with research on fiber amplifiers and lasers, graduate students, and researchers working in the fields of optical communications and quantum information. - Presents the only book on how to develop nonlinear fiber optic applications - Describes the latest research on nonlinear fiber optics - Demonstrates how nonlinear fiber optics principles are applied in practice

Product Details

ISBN-13: 9780128170410
Publisher: Elsevier Science & Technology Books
Publication date: 08/11/2020
Sold by: Barnes & Noble
Format: eBook
Pages: 564
File size: 34 MB
Note: This product may take a few minutes to download.

About the Author

Govind P. Agrawal received his B.Sc. degree from the University of Lucknow in 1969 with honours. He was awarded a gold medal for achieving the top position in the university. Govind joined the Indian Institute of Technology at New Delhi in 1969 and received the M.Sc. and Ph.D. degrees in 1971 and 1974, respectively. After holding positions at the Ecole Polytechnique (France), the City University of New York, and the Laser company, Quantel, Orsay, France, Dr. Agrawal joined in 1981 the technical staff of the world-famous AT&T Bell Laboratories, Murray Hill, N.J., USA, where he worked on problems related to the development of semiconductor lasers and fiber-optic communication systems. He joined in 1989 the faculty of the Institute of Optics at the University of Rochester where he is a Professor of Optics. His research interests focus on quantum electronics, nonlinear optics, and optical communications. In particular, he has contributed significantly to the fields of semiconductor lasers, nonlinear fiber optics, and optical communications. He is an author or co-author of more than 250 research papers, several book chapters and review articles, and four books. He has also edited the books "Contemporary Nonlinear Optics" (Academic Press, 1992) and "Semiconductor Lasers: Past, Present and Future" (AIP Press, 1995). The books authored by Dr. Agrawal have influenced an entire generation of scientists. Several of them have been translated into Chinese, Japanese, Greek, and Russian.

Table of Contents

1. Fiber Gratings2. Directional Couplers3. Fiber Interferometers4. Fiber Amplifiers5. Fiber Lasers6. Pulse Compression7. Fiber-Optic Communications8. Optical Signal Processing9. Highly Nonlinear Fibers10. Quantum Applications

What People are Saying About This

From the Publisher

Thorough update of the bestselling book on how to develop nonlinear fiber optic applications

Preface

Since the publication of the first edition of Nonlinear Fiber Optics in 1989, this field has virtually exploded. A major factor behind such tremendous growth was the advent of fiber amplifiers, made by doping silica or fluoride fibers with rare-earth ions such as erbium and neodymium. Such amplifiers revolutionized the design of fiber-optic communication systems, including those making use of optical solitons whose very existence stems from the presence of nonlinear effects in optical fibers. Optical amplifiers permit propagation of lightwave signals over thousands of kilometers as they can compensate for all losses encountered by the signal in the optical domain. At the same time, fiber amplifiers enable the use of massive wavelength-division multiplexing (WDM) and have led to the development of lightwave systems with capacities exceeding 1 Tb/s. Nonlinear fiber optics plays an increasingly important role in the design of such high-capacity lightwave systems. In fact, an understanding of various nonlinear effects occurring inside optical fibers is almost a prerequisite for a lightwave-system designer.

While preparing the third edition of Nonlinear Fiber Optics, my intention was to bring the book up to date so that it remains a unique source of comprehensive coverage on the subject of nonlinear fiber optics. An attempt was made to include recent research results on all topics relevant to the field of nonlinear fiber optics. Such an ambitious objective increased the size of the book to the extent that it was necessary to split it into two separate books, thus creating this new book Applications of Nonlinear Fiber Optics. The third edition of Nonlinear Fiber Optics deals with the fundamental aspects of the field. This book is devoted to the applications of nonlinear fiber optics, and its use requires knowledge of the fundamentals covered in Nonlinear Fiber Optics. Please note that when an equation or section number is prefaced with the letter A, that indicates that the topic is covered in more detail in the third edition of of Nonlinear Fiber Optics.

Most of the material in this volume is new. The first three chapters deal with three important fiber-optic components-fiber-based gratings, couplers, and interferometers-that serve as the building blocks of lightwave technology. In view of the enormous impact of rare-earth-doped fibers, amplifiers and lasers made by using such fibers are covered in Chapters 4 and 5. The last three chapters describe important applications of nonlinear fiber optics and are devoted to pulse-compression techniques, fiber-optic communication systems, and soliton-based transmission schemes. This volume should serve well the need of the scientific community interested in such fields as ultrafast phenomena, optical amplifiers and lasers, and optical communications. It will also be useful to graduate students as well as scientists and engineers involved in lightwave technology.

The potential readership is likely to consist of senior undergraduate students, graduate students enrolled in the M.S. and Ph.D. programs, engineers and technicians involved with the telecommunication industry, and scientists working in the fields of fiber optics and optical communications. This volume may be a useful text for graduate and senior-level courses dealing with nonlinear optics, fiber optics, or optical communications that are designed to provide mastery of the fundamental aspects. Some universities may even opt to offer a high-level graduate course devoted solely to nonlinear fiber optics. The problems provided at the end of each chapter should be useful to instructors of such a course.

Many individuals have contributed either directly or indirectly to the completion of this book. I am thankful to all of them, especially to my students, whose curiosity led to several improvements. Some of my colleagues have helped me in preparing this book. I thank Taras Lakoba, Zhi Liao, Natalia Litchinitser, Bishnu Pal, and Stojan Radic for reading several chapters and making helpful suggestions. I am grateful to many readers for their feedback. Last, but not least, I thank my wife, Anne, and my daughters, Sipra, Caroline, and Claire, for understanding why I needed to spend many weekends on the book instead of spending time with them.

Govind P Agrawal
Rochester, NY

From the B&N Reads Blog

Customer Reviews