Optically Stimulated Luminescence Dosimetry
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.
1101051445
Optically Stimulated Luminescence Dosimetry
Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.
250.0 In Stock
Optically Stimulated Luminescence Dosimetry

Optically Stimulated Luminescence Dosimetry

Optically Stimulated Luminescence Dosimetry

Optically Stimulated Luminescence Dosimetry

eBook

$250.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Optically Stimulated Luminescence (OSL) has become the technique of choice for many areas of radiation dosimetry. The technique is finding widespread application in a variety of radiation dosimetry fields, including personal monitoring, environmental monitoring, retrospective dosimetry (including geological dating and accident dosimetry), space dosimetry, and many more. In this book we have attempted to synthesize the major advances in the field, covering both fundamental understanding and the many applications. The latter serve to demonstrate the success and popularity of OSL as a dosimetry method.The book is designed for researchers and radiation dosimetry practitioners alike. It delves into the detailed theory of the process from the point of view of stimulated relaxation phenomena, describing the energy storage and release processes phenomenologically and developing detailed mathematical descriptions to enable a quantitative understanding of the observed phenomena. The various stimulation modes (continuous wave, pulsed, or linear modulation) are introduced and compared. The properties of the most important synthetic OSL materials beginning with the dominant carbon-doped Al2O3, and moving through discussions of other, less-well studied but nevertheless important, or potentially important, materials. The OSL properties of the two most important natural OSL dosimetry material types, namely quartz and feldspars are discussed in depth. The applications chapters deal with the use of OSL in personal, environmental, medical and UV dosimetry, geological dating and retrospective dosimetry (accident dosimetry and dating). Finally the developments in instrumentation that have occurred over the past decade or more are described. The book will find use in those laboratories within academia, national institutes and the private sector where research and applications in radiation dosimetry using luminescence are being conducted. Potential readers include personnel involved in radiation protection practice and research, hospitals, nuclear power stations, radiation clean-up and remediation, food irradiation and materials processing, security monitoring, geological and archaeological dating, luminescence studies of minerals, etc.

Product Details

ISBN-13: 9780080538075
Publisher: Elsevier Science
Publication date: 10/24/2003
Sold by: Barnes & Noble
Format: eBook
Pages: 374
File size: 11 MB
Note: This product may take a few minutes to download.

Table of Contents

PREFACE.CHAPTER 1: INTRODUCTION.1.1Optically stimulated luminescence.1.2Historical development of OSL dosimetry.1.3 OSL dosimetry.1.3.1Personal dosimetry.1.3.2Environmental dosimetry.1.3.3Medical dosimetry.1.3.4Retrospective dosimetry.1.4 This book.CHAPTER 2: OPTICALLY STIMULATED LUMINESCENCE THEORY.2.1 Stimulated luminescence.2.2 Generalised mathematical description of opticallystimulated luminescence.2.3The photoionisation cross-section.2.3.1 Optical transitions.2.3.2 Wavelength dependence.2.3.3 Measurement of the photoionisation cross-section.2.4CW-OSL.2.4.1 Models and rate equations.2.4.2 The one-trap/one-centre model.2.4.3 Models containing multiple-traps and centres.2.4.4 A more generalised model.2.4.5 Temperature dependence effects.2.4.6 Thermal quenching.2.5LM-OSL.2.5.1 First-order and general-order-kinetics.2.5.2 Relationship between LM-OSL and CW-OSL.2.5.3 Wavelength dependence of LM-OSL.2.5.4 Photoconductivity.2.6Pulsed OSL.2.6.1 Principles of POSL.2.6.2 Delayed OSL (DOSL).2.7Phototransferred effects.2.7.1Procedure.2.7.2Mathematical description and typical data.2.8Radiophotoluminescence.2.8.1 Procedure.CHAPTER 3: OSL PROPERTIES OF SYNTHETIC MATERIALS.3.1 Al2O3. 3.1.1 Introduction.3.1.2 Crystal growth.3.1.3 OSL stimulation and emission characteristics ofAl2O3:C. 3.1.4 The OSL response of Al2O3:C to radiation exposure.3.1.5 The temperature dependence of OSL from Al2O3:C. 3.1.6 Zeroing of the OSL signal fromAl2O3:C. 3.2 Halides.3.2.1 KCl.3.2.2 KBr.3.2.3 NaCl.3.2.4 RbI.3.2.5 CaF2.3.2.6 BaFX (X≡Br, Cl, I).3.3 Sulphates.3.3.1 MgSO4.3.3.2 CaSO4.3.4 Sulphides.3.4.1 AS (A ≡ Mg, Sr, Ca, Ba).3.5 Oxides.3.5.1 BeO.3.5.2 Fused quartz.CHAPTER 4: PASSIVE OPTICALLY STIMULATED LUMINESCENCEDOSIMETRY.4.1. Personal dosimetry.4.1.1 Introduction.4.1.2 Landauer's LuxelTM personal dosimetrysystem.4.1.3 Landauer's InLightTM personaldosimetry system.4.1.4 Beta dosimetry.4.1.5 POSL imaging.4.2. Environmental OSL dosimetry usingAl2O3.4.2.1 Measurement of the natural terrestrial background radiation.4.2.2 Measurement of the natural space backgroundradiation.4.3. UV dosimetry. 4.4. OSL and RL remote optical fibre dosimetry in medicalapplications.4.4.1 Real-time in-vivo monitoring of doses duringradiotherapy.4.4.2 Optical fibre dosimeters.CHAPTER 5: OSL PROPERTIES OF NATURAL MATERIALS.5.1 Quartz.5.1.1Crystal structure and point defects.5.1.2Decay curve shapes obtained under continuousstimulation - CW-OSL.5.1.2.1 Stimulation sources.5.1.2.2 Effect of the 110 °C trap.5.1.2.3 Dependence on power.5.1.2.4 Three components.5.1.2.5 Effect of stimulation wavelength.5.1.2.6 Effect of stimulation temperature.5.1.3Linear modulation OSL - LM-OSL.5.1.3.1 LM-OSL at 160 °C with 470 nmstimulation.5.1.3.2 LM-OSL at different temperatures with 526nm stimulation.5.1.4 Pulsed OSL.5.1.4.1.1 TRL.5.1.4.1.2 DOSL or OSA.5.1.5Excitation spectra.5.1.5.1 Bleaching response spectrum.5.1.5.2 Excitation spectra after bleaching by 514± 25 nm light.5.1.5.3 Continuous scanning of stimulationwavelengths.5.1.5.4 Excitation interference filters and usingxenon lamp.5.1.5.5 Excitation using laser lines from 458 to645 nm.5.1.5.6 Stimulation in the infrared 780 - 920nm.5.1.6Emission spectra.5.1.6.1 OSL emission spectra.5.1.6.2 TL emission spectra.(i)360 - 420 nm (near UV to violet). (ii)420 - 490 nm (blue). (iii) 590 - 650 nm (orange).5.6.1.3 Radioluminescence.5.1.7Dose dependence.5.1.7.1 Fast component.(i) Multiple aliquot data.(ii) Single aliquot data.(iii) Single grain data.5.1.7.2 Low doses.5.1.8Effects of previous thermal treatment.5.1.8.1 High temperature annealing - above 500°C.(i) Comparison of LM-OSL, TL, RL andEPR.(ii) CW-OSL growth curves afterannealing.5.1.8.
From the B&N Reads Blog

Customer Reviews