In this book, the author presents the theory of quasifree quantum fields and argues that they could provide non-zero scattering for some particles. The free-field representation of the quantised transverse electromagnetic field is not closed in the weak*-topology. Its closure contains soliton-anti-soliton pairs as limits of two-photon states as time goes to infinity, and the overlap probability can be computed using Uhlmann's prescription. There are no free parameters: the probability is determined with no requirement to specify any coupling constant. All cases of the Shale transforms of the free field ϕ of the form ϕ→ϕ+φ, where φ is not in the one-particle space, are treated in the book. There remain the cases of the Shale transforms of the form ϕ → Tϕ, where T is a symplectic map on the one-particle space, not near the identity.
1133771712
A THEORY OF SCATTERING FOR QUASIFREE PARTICLES
In this book, the author presents the theory of quasifree quantum fields and argues that they could provide non-zero scattering for some particles. The free-field representation of the quantised transverse electromagnetic field is not closed in the weak*-topology. Its closure contains soliton-anti-soliton pairs as limits of two-photon states as time goes to infinity, and the overlap probability can be computed using Uhlmann's prescription. There are no free parameters: the probability is determined with no requirement to specify any coupling constant. All cases of the Shale transforms of the free field ϕ of the form ϕ→ϕ+φ, where φ is not in the one-particle space, are treated in the book. There remain the cases of the Shale transforms of the form ϕ → Tϕ, where T is a symplectic map on the one-particle space, not near the identity.
27.0
In Stock
5
1

A THEORY OF SCATTERING FOR QUASIFREE PARTICLES
104
A THEORY OF SCATTERING FOR QUASIFREE PARTICLES
104Related collections and offers
27.0
In Stock
Product Details
ISBN-13: | 9789814612098 |
---|---|
Publisher: | World Scientific Publishing Company, Incorporated |
Publication date: | 07/31/2014 |
Sold by: | Barnes & Noble |
Format: | eBook |
Pages: | 104 |
File size: | 7 MB |
From the B&N Reads Blog