Analyzing Neural Time Series Data: Theory and Practice
A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings.

This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists.

Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button.

The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.

1124329225
Analyzing Neural Time Series Data: Theory and Practice
A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings.

This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists.

Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button.

The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.

67.99 In Stock
Analyzing Neural Time Series Data: Theory and Practice

Analyzing Neural Time Series Data: Theory and Practice

by Mike X Cohen
Analyzing Neural Time Series Data: Theory and Practice

Analyzing Neural Time Series Data: Theory and Practice

by Mike X Cohen

eBook

$67.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings.

This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists.

Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the “analyze now” button.

The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches.


Product Details

ISBN-13: 9780262319560
Publisher: MIT Press
Publication date: 01/17/2014
Series: The MIT Press
Sold by: Penguin Random House Publisher Services
Format: eBook
Pages: 600
File size: 19 MB
Note: This product may take a few minutes to download.
Age Range: 18 Years

About the Author

Mike X Cohen is Assistant Professor in the Donders Institute for Brain, Cognition, and Behavior at the Radboud University and University Medical Center, Nijmegan, the Netherlands. He is the author of Analyzing Neural Time Series Data: Theory and Practice (MIT Press).

What People are Saying About This

George R. Mangun

This impressive book is something I have been hoping for for years. It is meticulously organized to lead the knowledgeable novice to time series analyses from concept to actual implementation. Importantly, it is written to assume little advance knowledge of the topic, but to result in actionable understanding. Michael X Cohen has done the community a great service.

Michael J. Kahana

This book provides a technically rigorous, practical, and thorough survey of the major computational and statistical methods used in the time-frequency analysis of electrophysiological signals. Written in a lucid and engaging manner, Cohen's treatment will prove essential reading for both students and seasoned scholars, offering the former a clear roadmap into this exciting area of research and offering the latter an invaluable reference for nearly all of the major techniques. In putting this treatise together Cohen has done a great service for the burgeoning field of cognitive electrophysiology.

Endorsement

This book provides a technically rigorous, practical, and thorough survey of the major computational and statistical methods used in the time-frequency analysis of electrophysiological signals. Written in a lucid and engaging manner, Cohen's treatment will prove essential reading for both students and seasoned scholars, offering the former a clear roadmap into this exciting area of research and offering the latter an invaluable reference for nearly all of the major techniques. In putting this treatise together Cohen has done a great service for the burgeoning field of cognitive electrophysiology.

Michael J. Kahana, University of Pennsylvania

From the Publisher

For years, I have wished for a comprehensive and pragmatic volume that really explained—in plain English—the many complex techniques that are so often used in electrophysiological research. Although there are chapters in handbooks, and even entire books on digital signal processing, none are as comprehensive, pragmatic, lucid, or entertaining as Analyzing Neural Time Series Data.

John J. B. Allen, University of Arizona

This impressive book is something I have been hoping for for years. It is meticulously organized to lead the knowledgeable novice to time series analyses from concept to actual implementation. Importantly, it is written to assume little advance knowledge of the topic, but to result in actionable understanding. Michael X Cohen has done the community a great service.

George R. Mangun, University of California, Davis

This book provides a technically rigorous, practical, and thorough survey of the major computational and statistical methods used in the time-frequency analysis of electrophysiological signals. Written in a lucid and engaging manner, Cohen's treatment will prove essential reading for both students and seasoned scholars, offering the former a clear roadmap into this exciting area of research and offering the latter an invaluable reference for nearly all of the major techniques. In putting this treatise together Cohen has done a great service for the burgeoning field of cognitive electrophysiology.

Michael J. Kahana, University of Pennsylvania

John J. B. Allen

For years, I have wished for a comprehensive and pragmatic volume that really explained—in plain English—the many complex techniques that are so often used in electrophysiological research. Although there are chapters in handbooks, and even entire books on digital signal processing, none are as comprehensive, pragmatic, lucid, or entertaining as Analyzing Neural Time Series Data.

From the B&N Reads Blog

Customer Reviews