Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

ISBN-10:
3319688421
ISBN-13:
9783319688428
Pub. Date:
01/09/2018
Publisher:
Springer International Publishing
ISBN-10:
3319688421
ISBN-13:
9783319688428
Pub. Date:
01/09/2018
Publisher:
Springer International Publishing
Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging

$199.99
Current price is , Original price is $199.99. You
$199.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

This book offers the first comprehensive overview of artificial intelligence (AI) technologies in decision support systems for diagnosis based on medical images, presenting cutting-edge insights from thirteen leading research groups around the world.

Medical imaging offers essential information on patients’ medical condition, and clues to causes of their symptoms and diseases. Modern imaging modalities, however, also produce a large number of images that physicians have to accurately interpret. This can lead to an “information overload” for physicians, and can complicate their decision-making. As such, intelligent decision support systems have become a vital element in medical-image-based diagnosis and treatment.

Presenting extensive information on this growing field of AI, the book offers a valuable reference guide for professors, students, researchers and professionals who want to learn about the most recent developments and advances in the field.


Product Details

ISBN-13: 9783319688428
Publisher: Springer International Publishing
Publication date: 01/09/2018
Series: Intelligent Systems Reference Library , #140
Edition description: 1st ed. 2018
Pages: 387
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

Multi-modality Feature Learning in Diagnoses of Alzheimer’s Disease.- A Comparative Study of Modern Machine Learning Approaches for Focal Lesion Detection and Classification in Medical Images: BoVW, CNN and MTANN.- Introduction to Binary Coordinate Ascent: New Insights into Efficient Feature Subset Selection for Machine Learning.- Automated Lung Nodule Detection Using Positron Emission Tomography/Computed Tomography.- Detecting Mammographic Masses via Image Retrieval and Discriminative Learning.

From the B&N Reads Blog

Customer Reviews