Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
The next generation of problems will not have deterministic solutions – the solutions will be statistical that rely on mountains, or mounds, of data. Bayesian methods offer a very flexible and extendible framework to solve these types of problems. For programming students with minimal background in mathematics, this example-heavy guide emphasizes the new technologies that have allowed the inference to be abstracted from complicated underlying mathematics. Using Bayesian Methods for Hackers, students can start leveraging powerful Bayesian tools right now -- gradually deepening their theoretical knowledge while already achieving powerful results in areas ranging from marketing to finance.

The full text downloaded to your computer

With eBooks you can:

  • search for key concepts, words and phrases
  • make highlights and notes as you study
  • share your notes with friends

eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.

Upon purchase, you will receive via email the code and instructions on how to access this product.

Time limit

The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.

1124173513
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference
The next generation of problems will not have deterministic solutions – the solutions will be statistical that rely on mountains, or mounds, of data. Bayesian methods offer a very flexible and extendible framework to solve these types of problems. For programming students with minimal background in mathematics, this example-heavy guide emphasizes the new technologies that have allowed the inference to be abstracted from complicated underlying mathematics. Using Bayesian Methods for Hackers, students can start leveraging powerful Bayesian tools right now -- gradually deepening their theoretical knowledge while already achieving powerful results in areas ranging from marketing to finance.

The full text downloaded to your computer

With eBooks you can:

  • search for key concepts, words and phrases
  • make highlights and notes as you study
  • share your notes with friends

eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.

Upon purchase, you will receive via email the code and instructions on how to access this product.

Time limit

The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.

37.99 In Stock
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference

by Cameron Davidson-Pilon
Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference

by Cameron Davidson-Pilon

eBook

$37.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The next generation of problems will not have deterministic solutions – the solutions will be statistical that rely on mountains, or mounds, of data. Bayesian methods offer a very flexible and extendible framework to solve these types of problems. For programming students with minimal background in mathematics, this example-heavy guide emphasizes the new technologies that have allowed the inference to be abstracted from complicated underlying mathematics. Using Bayesian Methods for Hackers, students can start leveraging powerful Bayesian tools right now -- gradually deepening their theoretical knowledge while already achieving powerful results in areas ranging from marketing to finance.

The full text downloaded to your computer

With eBooks you can:

  • search for key concepts, words and phrases
  • make highlights and notes as you study
  • share your notes with friends

eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.

Upon purchase, you will receive via email the code and instructions on how to access this product.

Time limit

The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.


Product Details

ISBN-13: 9780133902921
Publisher: Pearson Education
Publication date: 09/30/2015
Series: Addison-Wesley Data & Analytics Series
Sold by: Barnes & Noble
Format: eBook
Pages: 256
File size: 26 MB
Note: This product may take a few minutes to download.
Age Range: 18 Years

About the Author

Cameron Davidson-Pilon has seen many fields of applied mathematics, from evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His main contributions to the open-source community include Bayesian Methods for Hackers and lifelines. Cameron was raised in Guelph, Ontario, but was educated at the University of Waterloo and Independent University of Moscow. He currently lives in Ottawa, Ontario, working with the online commerce leader Shopify.

Table of Contents

Foreword xiii

Preface xv

Acknowledgments xvii

About the Author xix

 

Chapter 1: The Philosophy of Bayesian Inference 1

1.1 Introduction 1

1.2 Our Bayesian Framework 5

1.3 Probability Distributions 8

1.4 Using Computers to Perform Bayesian Inference for Us 12

1.5 Conclusion 20

1.6 Appendix 20

1.7 Exercises 24

1.8 References 25

 

Chapter 2: A Little More on PyMC 27

2.1 Introduction 27

2.2 Modeling Approaches 33

2.3 Is Our Model Appropriate? 61

2.4 Conclusion 68

2.5 Appendix 68

2.6 Exercises 69

2.7 References 69

 

Chapter 3: Opening the Black Box of MCMC 71

3.1 The Bayesian Landscape 71

3.2 Diagnosing Convergence 92

3.3 Useful Tips for MCMC 98

3.4 Conclusion 99

3.5 Reference 99

 

Chapter 4: The Greatest Theorem Never Told 101

4.1 Introduction 101

4.2 The Law of Large Numbers 101

4.3 The Disorder of Small Numbers 107

4.4 Conclusion 122

4.5 Appendix 122

4.6 Exercises 123

4.7 References 125

 

Chapter 5: Would You Rather Lose an Arm or a Leg? 127

5.1 Introduction 127

5.2 Loss Functions 127

5.3 Machine Learning via Bayesian Methods 139

5.4 Conclusion 156

5.5 References 156

 

Chapter 6: Getting Our Priorities Straight 157

6.1 Introduction 157

6.2 Subjective versus Objective Priors 157

6.3 Useful Priors to Know About 161

6.4 Example: Bayesian Multi-Armed Bandits 164

6.5 Eliciting Prior Distributions from Domain Experts 176

6.6 Conjugate Priors 185

6.7 Jeffreys Priors 185

6.8 Effect of the Prior as N Increases 187

6.9 Conclusion 189

6.10 Appendix 190

6.11 References 193

 

Chapter 7: Bayesian A/B Testing 195

7.1 Introduction 195

7.2 Conversion Testing Recap 195

7.3 Adding a Linear Loss Function 198

7.4 Going Beyond Conversions: t-test 204

7.5 Estimating the Increase 207

7.6 Conclusion 211

7.7 References 212

 

Glossary 213

Index 217

From the B&N Reads Blog

Customer Reviews