Bounded Dynamic Stochastic Systems: Modelling and Control / Edition 1

Bounded Dynamic Stochastic Systems: Modelling and Control / Edition 1

by Hong Wang
ISBN-10:
1852331879
ISBN-13:
9781852331870
Pub. Date:
04/13/2000
Publisher:
Springer London
ISBN-10:
1852331879
ISBN-13:
9781852331870
Pub. Date:
04/13/2000
Publisher:
Springer London
Bounded Dynamic Stochastic Systems: Modelling and Control / Edition 1

Bounded Dynamic Stochastic Systems: Modelling and Control / Edition 1

by Hong Wang

Hardcover

$109.99
Current price is , Original price is $109.99. You
$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

Over the past decades, although shastic system control has been studied intensively within the field of control engineering, all the modelling and control strategies developed so far have concentrated on the performance of one or two output properties of the system. such as minimum variance control and mean value control. The general assumption used in the formulation of modelling and control strategies is that the distribution of the random signals involved is Gaussian. In this book, a set of new approaches for the control of the output probability density function of shastic dynamic systems (those subjected to any bounded random inputs), has been developed. In this context, the purpose of control system design becomes the selection of a control signal that makes the shape of the system outputs p.d.f. as close as possible to a given distribution. The book contains material on the subjects of: - Control of single-input single-output and multiple-input multiple-output shastic systems; - Stable adaptive control of shastic distributions; - Model reference adaptive control; - Control of nonlinear dynamic shastic systems; - Condition monitoring of bounded shastic distributions; - Control algorithm design; - Singular shastic systems.

A new representation of dynamic shastic systems is produced by using B-spline functions to descripe the output p.d.f. Advances in Industrial Control aims to report and encourage the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.


Product Details

ISBN-13: 9781852331870
Publisher: Springer London
Publication date: 04/13/2000
Series: Advances in Industrial Control
Edition description: 2000
Pages: 176
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

1 Preliminaries.- 1.1 Introduction.- 1.2 An example: flocculation model.- 1.3 The aim of the new development.- 1.4 The structure of the book.- 1.5 Random variables and shastic processes.- 1.6 Shastic processes.- 1.7 Some typical distributions.- 1.8 Conclusions.- 2 Control of SISO Shastic Systems: A Fundamental Control Law.- 2.1 Introduction.- 2.2 Preliminaries on B-splines artificial neural networks.- 2.3 Model representation.- 2.4 System modelling and parameter estimation.- 2.5 Control algorithm design.- 2.6 Discussions.- 2.7 Examples.- 2.8 Conclusions.- 3 Control of MIMO Shastic Systems: Robustness and Stability.- 3.1 Introductionx.- 3.2 Model representation.- 3.3 The controller using V(k).- 3.4 The controller using f(y, U(k)).- 3.5 An illustrative example.- 3.6 Conclusions and discussions.- 4 Realization of Perfect Tracking.- 4.1 Introduction.- 4.2 Preliminaries and model representation.- 4.3 Main result.- 4.4 Simulation results.- 4.5 An LQR based algorithm.- 4.6 Conclusions.- 5 Stable Adaptive Control of Shastic Distributions.- 5.1 Introduction.- 5.2 Model representation.- 5.3 On-line estimation and its convergence.- 5.4 Adaptive control algorithm design.- 5.5 Stability analysis.- 5.6 A simulated example.- 5.7 Conclusions.- 6 Model Reference Adaptive Control.- 6.1 Introduction.- 6.2 Model representation.- 6.3 An adaptive controller design.- 6.4 Adaptive tuning rules for K(t) and Q(t).- 6.5 Robust adaptive control scheme.- 6.6 A case study.- 6.7 Conclusions and discussions.- 7 Control of Nonlinear Shastic Systems.- 7.1 Introduction.- 7.2 Model representation.- 7.3 Control algorithm design.- 7.4 Stability issues.- 7.5 A neural network approach.- 7.6 Two examples.- 7.7 Calculation of—.- 7.8 Conclusions.- 8 Application to Fault Detection.- 8.1Introduction.- 8.2 Model representation.- 8.3 Fault detection.- 8.4 An adaptive diagnostic observer.- 8.5 Discussions.- 8.6 An identification based FDD.- 8.7 Fault diagnosis.- 8.8 Discussions and conclusions.- 9 Advanced Topics.- 9.1 Introduction.- 9.2 Square root models.- 9.3 Control algorithm design.- 9.4 Simulations.- 9.5 Continuous-time models.- 9.6 The control algorithm.- 9.7 Control of the mean and variance.- 9.8 Singular shastic systems.- 9.9 Pseudo ARMAX systems.- 9.10 Filtering issues.- 9.11 Conclusions.- References.
From the B&N Reads Blog

Customer Reviews