Pub. Date:
Elsevier Science
Cellular and Molecular Neurophysiology / Edition 4

Cellular and Molecular Neurophysiology / Edition 4

by Constance Hammond
Current price is , Original price is $150.0. You

Temporarily Out of Stock Online

Please check back later for updated availability.

Product Details

ISBN-13: 9780123970329
Publisher: Elsevier Science
Publication date: 01/20/2015
Edition description: New Edition
Pages: 444
Product dimensions: 8.50(w) x 11.00(h) x 1.10(d)

About the Author

Constance Hammond is an INSERM director of research at the Mediterranean Institute of Neurobiology. A renowned Parkinson's disease investigator, in 2012 she became a Chevalier of the Légion d'Honneur in recognition for her services to scientific communication. Studying biology at the University of Pierre and Marie Curie and the Ecole Normale Supérieure in Paris she completed her thesis in neurosciences at the Marey Institute in Paris, directed by Prof. D. Albe-Fessard. Guided by her curiosity and her constant desire to learn, she changed lab and research domains several times. With the knowledge of other systems and the mastering of other techniques she finally came back to her first and preferred subject of research; the role of the subthalamic nucleus in the basal ganglia system in health and Parkinson's disease.

After many years of lecturing neurobiology to biology and psychology students it became apparent that students were in need of a book to help understand the basic principles of cell electrophysiology. Discussions with Philippe Ascher convinced her that the best way to approach the subject was to explain ionic currents and potential changes in terms of single channels and unitary currents, describing pioneering neurobiological experiments. This first book "Neurobiologie Cellulaire" (written in French with her colleague Danièle Tritsch) appeared in 1990. Its immediate success inspired her to completely revise the book content and publish it in English giving it to a larger audience; Appearing in 1996 the fist edition of "Cellular and Molecular Neuroscience" was born.

Table of Contents

Part I. Neurons: Excitable and Secretory Cells That Establish Synapses 1. Neurons 2. Neuron - Glial Cell Cooperation 3. Ionic Gradients, Membrane Potential and Ionic Currents 4. The Voltage-Gated Channels of Na+ Action Potentials 5. The Voltage-Gated Channels of Ca+2 Action Potentials: Generalization 6. The Chemical Synapses 7. Neurotransmitter Release

Part II. Ionotropic and Metabotropic Receptors in Synaptic Transmission and Sensory Transduction 8. The Ionotropic Nicotinic Acetycholine Receptors 9. The Ionotropic GABAA Receptor 10. The Ionotropic Glutamate Receptors 11. The Metabotropic GABAB Receptors 12. The Metabotropic Glutamate Receptors

Part III. Somato-Dendritic Processing and Plasticity of Postsynaptic Potentials 13. Somato-Dendritic Processing of Postsynaptic Potentials I: Passive Properties of Dendrites 14. Subliminal Voltage-Gated Currents of the Somato-Dendritic Membrane 15. Somato-Dendritic Processing of Postsynaptic Potentials II: Role of Subthreshold Depolarizing Voltage-Gated Currents 16. Somato-Dendritic Processing of Postsynaptic Potentials III: Role of High Voltage-Activated Depolarizing Currents 17. Firing Patterns of Neurons 18. Synaptic Plasticity

Part IV. The Adult Hippocampal Network 19. The Adult Hippocampal Network 20. Maturation of the Hippocampal Network

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews