Conjugate Gradient Type Methods for Ill-Posed Problems
The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.
1128403336
Conjugate Gradient Type Methods for Ill-Posed Problems
The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.
82.99 In Stock
Conjugate Gradient Type Methods for Ill-Posed Problems

Conjugate Gradient Type Methods for Ill-Posed Problems

by Martin Hanke
Conjugate Gradient Type Methods for Ill-Posed Problems

Conjugate Gradient Type Methods for Ill-Posed Problems

by Martin Hanke

eBook

$82.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The conjugate gradient method is a powerful tool for the iterative solution of self-adjoint operator equations in Hilbert space.This volume summarizes and extends the developments of the past decade concerning the applicability of the conjugate gradient method (and some of its variants) to ill posed problems and their regularization. Such problems occur in applications from almost all natural and technical sciences, including astronomical and geophysical imaging, signal analysis, computerized tomography, inverse heat transfer problems, and many more This Research Note presents a unifying analysis of an entire family of conjugate gradient type methods. Most of the results are as yet unpublished, or obscured in the Russian literature. Beginning with the original results by Nemirovskii and others for minimal residual type methods, equally sharp convergence results are then derived with a different technique for the classical Hestenes-Stiefel algorithm. In the final chapter some of these results are extended to selfadjoint indefinite operator equations. The main tool for the analysis is the connection of conjugate gradient type methods to real orthogonal polynomials, and elementary properties of these polynomials. These prerequisites are provided in a first chapter. Applications to image reconstruction and inverse heat transfer problems are pointed out, and exemplarily numerical results are shown for these applications.

Product Details

ISBN-13: 9781351458320
Publisher: CRC Press
Publication date: 11/22/2017
Series: Chapman & Hall/CRC Research Notes in Mathematics Series
Sold by: Barnes & Noble
Format: eBook
Pages: 144
File size: 2 MB

About the Author

Hanke, Martin

Table of Contents

1. Conjugate Gradient Type Methods 2. Regularizing Properties of MR and CGNE 3. Regularizing Properties of CG and CGME 4. On the Number of Iterations 5. A Minimal Residual Method for Indefinite Problems
From the B&N Reads Blog

Customer Reviews