Constrained Clustering: Advances in Algorithms, Theory, and Applications
This volume encompasses many new types of constraints and clustering methods as well as delivers thorough coverage of the capabilities and limitations of constrained clustering. With contributions from industrial researchers and leading academic experts who pioneered the field, it provides a well-balanced combination of theoretical advances, key algorithmic development, and novel applications. The book presents various types of constraints for clustering and describes useful variations of the standard problem of clustering under constraints. It also demonstrates the application of clustering with constraints to relational, bibliographic, and video data.
1128412286
Constrained Clustering: Advances in Algorithms, Theory, and Applications
This volume encompasses many new types of constraints and clustering methods as well as delivers thorough coverage of the capabilities and limitations of constrained clustering. With contributions from industrial researchers and leading academic experts who pioneered the field, it provides a well-balanced combination of theoretical advances, key algorithmic development, and novel applications. The book presents various types of constraints for clustering and describes useful variations of the standard problem of clustering under constraints. It also demonstrates the application of clustering with constraints to relational, bibliographic, and video data.
69.99 In Stock
Constrained Clustering: Advances in Algorithms, Theory, and Applications

Constrained Clustering: Advances in Algorithms, Theory, and Applications

Constrained Clustering: Advances in Algorithms, Theory, and Applications

Constrained Clustering: Advances in Algorithms, Theory, and Applications

eBook

$69.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This volume encompasses many new types of constraints and clustering methods as well as delivers thorough coverage of the capabilities and limitations of constrained clustering. With contributions from industrial researchers and leading academic experts who pioneered the field, it provides a well-balanced combination of theoretical advances, key algorithmic development, and novel applications. The book presents various types of constraints for clustering and describes useful variations of the standard problem of clustering under constraints. It also demonstrates the application of clustering with constraints to relational, bibliographic, and video data.

Product Details

ISBN-13: 9781040205709
Publisher: CRC Press
Publication date: 08/18/2008
Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Sold by: Barnes & Noble
Format: eBook
Pages: 472
File size: 9 MB

About the Author

Sugato Basu, Ian Davidson, Kiri Wagstaff

Table of Contents

Introduction. Semisupervised Clustering with User Feedback.Gaussian Mixture Models with Equivalence Constraints.Pairwise Constraints as Priors in Probabilistic Clustering. Clustering with Constraints: A Mean-Field Approximation Perspective.Constraint-Driven Co-Clustering of 0/1 Data.On Supervised Clustering for Creating Categorization Segmentations.Clustering with Balancing Constraints.Using Assignment Constraints to Avoid Empty Clusters in k-Means Clustering.Collective Relational Clustering.Nonredundant Data Clustering.Joint Cluster Analysis of Attribute Data and Relationship Data.Correlation Clustering.Interactive Visual Clustering for Relational Data.Distance Metric Learning from Cannot-Be-Linked Example Pairs with Application to Name Disambiguation. Privacy-Preserving Data Publishing: A Constraint-Based Clustering Approach.Learning with Pairwise Constraints for Video Object Classification. References. Index.
From the B&N Reads Blog

Customer Reviews