Data Quality for Analytics Using SAS
Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting.
1110389615
Data Quality for Analytics Using SAS
Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting.
52.99 In Stock
Data Quality for Analytics Using SAS

Data Quality for Analytics Using SAS

by Gerhard Svolba
Data Quality for Analytics Using SAS

Data Quality for Analytics Using SAS

by Gerhard Svolba

eBook

$52.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Analytics offers many capabilities and options to measure and improve data quality, and SAS is perfectly suited to these tasks. Gerhard Svolba's Data Quality for Analytics Using SAS focuses on selecting the right data sources and ensuring data quantity, relevancy, and completeness. The book is made up of three parts. The first part, which is conceptual, defines data quality and contains text, definitions, explanations, and examples. The second part shows how the data quality status can be profiled and the ways that data quality can be improved with analytical methods. The final part details the consequences of poor data quality for predictive modeling and time series forecasting.

Product Details

ISBN-13: 9781629598024
Publisher: SAS Institute
Publication date: 05/05/2015
Sold by: Barnes & Noble
Format: eBook
Pages: 356
File size: 31 MB
Note: This product may take a few minutes to download.

About the Author

Dr. Gerhard Svolba is a senior solutions architect and analytic expert at SAS Institute Inc. in Austria, where he specializes in analytics in different business and research domains. His project experience ranges from business and technical conceptual considerations to data preparation and analytic modeling across industries. He is the author of Data Preparation for Analytics Using SAS and teaches a SAS training course called "Building Analytic Data Marts."
From the B&N Reads Blog

Customer Reviews