Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions

The results presented here (including the assessment of a new tool – inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation.


1133106655
Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions

The results presented here (including the assessment of a new tool – inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation.


99.0 In Stock
Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions

Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions

Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions

Decision and Inhibitory Trees and Rules for Decision Tables with Many-valued Decisions

eBook1st ed. 2020 (1st ed. 2020)

$99.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The results presented here (including the assessment of a new tool – inhibitory trees) offer valuable tools for researchers in the areas of data mining, knowledge discovery, and machine learning, especially those whose work involves decision tables with many-valued decisions. The authors consider various examples of problems and corresponding decision tables with many-valued decisions, discuss the difference between decision and inhibitory trees and rules, and develop tools for their analysis and design. Applications include the study of totally optimal (optimal in relation to a number of criteria simultaneously) decision and inhibitory trees and rules; the comparison of greedy heuristics for tree and rule construction as single-criterion and bi-criteria optimization algorithms; and the development of a restricted multi-pruning approach used in classification and knowledge representation.



Product Details

ISBN-13: 9783030128548
Publisher: Springer-Verlag New York, LLC
Publication date: 03/13/2019
Series: Intelligent Systems Reference Library , #156
Sold by: Barnes & Noble
Format: eBook
File size: 27 MB
Note: This product may take a few minutes to download.

Table of Contents

As in MS.
From the B&N Reads Blog

Customer Reviews