Designing Scientific Applications on GPUs
Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific Applications
1115530425
Designing Scientific Applications on GPUs
Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific Applications
61.99 In Stock
Designing Scientific Applications on GPUs

Designing Scientific Applications on GPUs

by Raphael Couturier (Editor)
Designing Scientific Applications on GPUs

Designing Scientific Applications on GPUs

by Raphael Couturier (Editor)

eBook

$61.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Many of today's complex scientific applications now require a vast amount of computational power. General purpose graphics processing units (GPGPUs) enable researchers in a variety of fields to benefit from the computational power of all the cores available inside graphics cards.Understand the Benefits of Using GPUs for Many Scientific Applications

Product Details

ISBN-13: 9781040058329
Publisher: CRC Press
Publication date: 11/21/2013
Series: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Sold by: Barnes & Noble
Format: eBook
Pages: 498
File size: 41 MB
Note: This product may take a few minutes to download.

About the Author

Rapha Couturier is a professor of computer science at the University of Franche-Comte and vice head of the Computer Science Department at FEMTO-ST Institute. He has co-authored over 80 articles in peer-reviewed journals and conferences. He received a Ph.D. from Henri Poincare University. His research interests include parallel and distributed computation, numerical algorithms, GPU and FPGA computing, and asynchronous iterative algorithms.

Table of Contents

PRESENTATION OF GPUs: Presentation of the GPU Architecture and the Cuda Environment. Introduction to Cuda. IMAGE PROCESSING: Setting up the Environment. Implementing a Fast Median Filter. Implementing an Efficient Convolution Operation on GPU. SOFTWARE DEVELOPMENT: Development of Software Components for Heterogeneous Many-Core Architectures. Development Methodologies for GPU and Cluster of GPUs. OPTIMIZATION: GPU-Accelerated Tree-Based Exact Optimization Methods. Parallel GPU-Accelerated Metaheuristics. Linear Programming on a GPU: A Case Study. NUMERICAL APPLICATIONS: Fast Hydrodynamics on Heterogeneous Many-Core Hardware. Parallel Monotone Spline Interpolation and Approximation on GPUs. Solving Linear Systems with GMRES and CG Methods on GPU Clusters. Solving Sparse Nonlinear Systems of Obstacle Problems on GPU Clusters. Ludwig: Multiple GPUs for a Fluid Lattice Boltzmann Application. Numerical Validation and GPU Performance in Atomic Physics. GPU-Accelerated Envelope-Following Method. OTHER: Implementing Multi-Agent Systems on GPU. Pseudorandom Number Generator on GPU. Solving Large Sparse Linear Systems for Integer Factorization on GPUs. Index.
From the B&N Reads Blog

Customer Reviews