Domain-Specific Knowledge Graph Construction

The vast amounts of ontologically unstructured information on the Web, including HTML, XML and JSON documents, natural language documents, tweets, blogs, markups, and even structured documents like CSV tables, all contain useful knowledge that can present a tremendous advantage to the Artificial Intelligence community if extracted robustly, efficiently and semi-automatically as knowledge graphs. Domain-specific Knowledge Graph Construction (KGC) is an active research area that has recently witnessed impressive advances due to machine learning techniques like deep neural networks and word embeddings. This book will synthesize Knowledge Graph Construction over Web Data in an engaging and accessible manner.

The book describes a timely topic for both early -and mid-career researchers. Every year, more papers continue to be published on knowledge graph construction, especially for difficult Web domains. This book serves as a useful reference, as well as anaccessible but rigorous overview of this body of work. The book presents interdisciplinary connections when possible to engage researchers looking for new ideas or synergies. The book also appeals to practitioners in industry and data scientists since it has chapters on both data collection, as well as a chapter on querying and off-the-shelf implementations.

1133115770
Domain-Specific Knowledge Graph Construction

The vast amounts of ontologically unstructured information on the Web, including HTML, XML and JSON documents, natural language documents, tweets, blogs, markups, and even structured documents like CSV tables, all contain useful knowledge that can present a tremendous advantage to the Artificial Intelligence community if extracted robustly, efficiently and semi-automatically as knowledge graphs. Domain-specific Knowledge Graph Construction (KGC) is an active research area that has recently witnessed impressive advances due to machine learning techniques like deep neural networks and word embeddings. This book will synthesize Knowledge Graph Construction over Web Data in an engaging and accessible manner.

The book describes a timely topic for both early -and mid-career researchers. Every year, more papers continue to be published on knowledge graph construction, especially for difficult Web domains. This book serves as a useful reference, as well as anaccessible but rigorous overview of this body of work. The book presents interdisciplinary connections when possible to engage researchers looking for new ideas or synergies. The book also appeals to practitioners in industry and data scientists since it has chapters on both data collection, as well as a chapter on querying and off-the-shelf implementations.

69.99 In Stock
Domain-Specific Knowledge Graph Construction

Domain-Specific Knowledge Graph Construction

by Mayank Kejriwal
Domain-Specific Knowledge Graph Construction

Domain-Specific Knowledge Graph Construction

by Mayank Kejriwal

eBook1st ed. 2019 (1st ed. 2019)

$69.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The vast amounts of ontologically unstructured information on the Web, including HTML, XML and JSON documents, natural language documents, tweets, blogs, markups, and even structured documents like CSV tables, all contain useful knowledge that can present a tremendous advantage to the Artificial Intelligence community if extracted robustly, efficiently and semi-automatically as knowledge graphs. Domain-specific Knowledge Graph Construction (KGC) is an active research area that has recently witnessed impressive advances due to machine learning techniques like deep neural networks and word embeddings. This book will synthesize Knowledge Graph Construction over Web Data in an engaging and accessible manner.

The book describes a timely topic for both early -and mid-career researchers. Every year, more papers continue to be published on knowledge graph construction, especially for difficult Web domains. This book serves as a useful reference, as well as anaccessible but rigorous overview of this body of work. The book presents interdisciplinary connections when possible to engage researchers looking for new ideas or synergies. The book also appeals to practitioners in industry and data scientists since it has chapters on both data collection, as well as a chapter on querying and off-the-shelf implementations.


Product Details

ISBN-13: 9783030123758
Publisher: Springer-Verlag New York, LLC
Publication date: 03/04/2019
Series: SpringerBriefs in Computer Science
Sold by: Barnes & Noble
Format: eBook
File size: 13 MB
Note: This product may take a few minutes to download.

Table of Contents

1. What is a knowledge graph?.- 2. Information Extraction.- 3. Entity Resolution.- 4. Advanced Topic: Knowledge Graph Completion.- 5. Ecosystems 
From the B&N Reads Blog

Customer Reviews