Emerging Trends in Image Processing, Computer Vision and Pattern Recognition
Emerging Trends in Image Processing, Computer Vision, and Pattern Recognition discusses the latest in trends in imaging science which at its core consists of three intertwined computer science fields, namely: Image Processing, Computer Vision, and Pattern Recognition. There is significant renewed interest in each of these three fields fueled by Big Data and Data Analytic initiatives including but not limited to; applications as diverse as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. These three core topics discussed here provide a solid introduction to image processing along with low-level processing techniques, computer vision fundamentals along with examples of applied applications and pattern recognition algorithms and methodologies that will be of value to the image processing and computer vision research communities. Drawing upon the knowledge of recognized experts with years of practical experience and discussing new and novel applications Editors' Leonidas Deligiannidis and Hamid Arabnia cover; - Many perspectives of image processing spanning from fundamental mathematical theory and sampling, to image representation and reconstruction, filtering in spatial and frequency domain, geometrical transformations, and image restoration and segmentation - Key application techniques in computer vision some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication - Pattern recognition algorithms including but not limited to; Supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - How to use image processing and visualization to analyze big data. - Discusses novel applications that can benefit from image processing, computer vision and pattern recognition such as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. - Covers key application techniques in computer vision from fundamentals to mid to high level processing some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication. - Presents a number of pattern recognition algorithms and methodologies including but not limited to; supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - Explains how to use image processing and visualization to analyze big data.
1132571677
Emerging Trends in Image Processing, Computer Vision and Pattern Recognition
Emerging Trends in Image Processing, Computer Vision, and Pattern Recognition discusses the latest in trends in imaging science which at its core consists of three intertwined computer science fields, namely: Image Processing, Computer Vision, and Pattern Recognition. There is significant renewed interest in each of these three fields fueled by Big Data and Data Analytic initiatives including but not limited to; applications as diverse as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. These three core topics discussed here provide a solid introduction to image processing along with low-level processing techniques, computer vision fundamentals along with examples of applied applications and pattern recognition algorithms and methodologies that will be of value to the image processing and computer vision research communities. Drawing upon the knowledge of recognized experts with years of practical experience and discussing new and novel applications Editors' Leonidas Deligiannidis and Hamid Arabnia cover; - Many perspectives of image processing spanning from fundamental mathematical theory and sampling, to image representation and reconstruction, filtering in spatial and frequency domain, geometrical transformations, and image restoration and segmentation - Key application techniques in computer vision some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication - Pattern recognition algorithms including but not limited to; Supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - How to use image processing and visualization to analyze big data. - Discusses novel applications that can benefit from image processing, computer vision and pattern recognition such as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. - Covers key application techniques in computer vision from fundamentals to mid to high level processing some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication. - Presents a number of pattern recognition algorithms and methodologies including but not limited to; supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - Explains how to use image processing and visualization to analyze big data.
130.0 In Stock
Emerging Trends in Image Processing, Computer Vision and Pattern Recognition

Emerging Trends in Image Processing, Computer Vision and Pattern Recognition

Emerging Trends in Image Processing, Computer Vision and Pattern Recognition

Emerging Trends in Image Processing, Computer Vision and Pattern Recognition

eBook

$130.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Emerging Trends in Image Processing, Computer Vision, and Pattern Recognition discusses the latest in trends in imaging science which at its core consists of three intertwined computer science fields, namely: Image Processing, Computer Vision, and Pattern Recognition. There is significant renewed interest in each of these three fields fueled by Big Data and Data Analytic initiatives including but not limited to; applications as diverse as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. These three core topics discussed here provide a solid introduction to image processing along with low-level processing techniques, computer vision fundamentals along with examples of applied applications and pattern recognition algorithms and methodologies that will be of value to the image processing and computer vision research communities. Drawing upon the knowledge of recognized experts with years of practical experience and discussing new and novel applications Editors' Leonidas Deligiannidis and Hamid Arabnia cover; - Many perspectives of image processing spanning from fundamental mathematical theory and sampling, to image representation and reconstruction, filtering in spatial and frequency domain, geometrical transformations, and image restoration and segmentation - Key application techniques in computer vision some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication - Pattern recognition algorithms including but not limited to; Supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - How to use image processing and visualization to analyze big data. - Discusses novel applications that can benefit from image processing, computer vision and pattern recognition such as computational biology, biometrics, biomedical imaging, robotics, security, and knowledge engineering. - Covers key application techniques in computer vision from fundamentals to mid to high level processing some of which are camera networks and vision, image feature extraction, face and gesture recognition and biometric authentication. - Presents a number of pattern recognition algorithms and methodologies including but not limited to; supervised and unsupervised classification algorithms, Ensemble learning algorithms, and parsing algorithms. - Explains how to use image processing and visualization to analyze big data.

Product Details

ISBN-13: 9780128020920
Publisher: Morgan Kaufmann Publishers
Publication date: 12/09/2014
Series: Emerging Trends in Computer Science and Applied Computing
Sold by: Barnes & Noble
Format: eBook
Pages: 640
File size: 42 MB
Note: This product may take a few minutes to download.

About the Author

Leonidas Deligiannidis is a Professor of Computer Science and Networking at Wentworth Institute of Technology in Boston. His research examines Image Processing, Network Security and Information Visualization. Deligiannidis earned his PhD in Computer Science at Tufts University.
Hamid R. Arabnia is currently a Full Professor of Computer Science at University of Georgia where he has been since October 1987. His research interests include Parallel and distributed processing techniques and algorithms, interconnection networks, and applications in Computational Science and Computational Intelligence (in particular, in image processing, medical imaging, bioinformatics, and other computational intensive problems). Dr. Arabnia is Editor-in-Chief of The Journal of is Associate Editor of IEEE Transactions on Information Technology in Biomedicine . He has over 300 publications (journals, proceedings, editorship) in his area of research in addition he has edited two titles Emerging Trends in ICT Security (Elsevier 2013), and Advances in Computational Biology (Springer 2012).

Table of Contents

IMAGE PROCESSING (about 30 articles) This section addresses many of the low-level processing as well as imaging fundamentals. Chapter 1: Software Tools for Imaging Chapter 2: Image Generation, Acquisition, and Processing Chapter 3: Image-based Modeling and Algorithms Chapter 4: Mathematical Morphology Chapter 5: Image Geometry and Multi-view Geometry Chapter 6: 3D Imaging Chapter 7: Novel Noise Reduction Algorithms Chapter 8: Image Restoration Chapter 9: Enhancement Techniques Chapter 10: Segmentation Techniques Chapter 11: Motion and Tracking Algorithms and Applications Chapter 12: Watermarking Methods and Protection + Wavelet Methods Chapter 13: Image Data Structures and Databases Chapter 14: Image Compression, Coding, and Encryption Chapter 15: Video Analysis Chapter 16: Multi-resolution Imaging Techniques Chapter 17: Performance Analysis and Evaluation Chapter 18: Multimedia Systems and Applications Chapter 19: Novel Image Processing Applications Section 2: COMPUTER VISION (about 25 articles) This section addresses many of the mid- to high-level processing as well as vision fundamentals. Chapter 20: Camera Networks and Vision Chapter 21: Sensors and Early Vision Chapter 22: Machine Learning Technologies for Vision Chapter 23: Image Feature Extraction Chapter 24: Cognitive and Biologically Inspired Vision Chapter 25: Object Recognition Chapter 26: Soft Computing Methods in Image Processing and Vision Chapter 27: Stereo Vision Chapter 28: Active and Robot Vision Chapter 29: Face and Gesture Recognition Chapter 30: Fuzzy and Neural Techniques in Vision Chapter 31: Medical Image Processing and Analysis Chapter 32: Novel Document Image Understanding Techniques Chapter 33: Special-purpose Machine Architectures for Vision Chapter 34: Biometric Authentication Chapter 35: Novel Vision Application and Case Studies Section 3: PATTERN RECOGNITION (about 20 articles) This section presents a number of pattern recognition algorithms and methodologies that are of value to the image processing and computer vision research communities. Chapter 36: Supervised and Un-supervised Classification Algorithms Chapter 37: Clustering Techniques Chapter 38: Dimensionality Reduction Methods in Pattern Recognition Chapter 39: Symbolic Learning Chapter 40: Ensemble Learning Algorithms Chapter 41: Parsing Algorithms Chapter 42: Bayesian Methods in Pattern Recognition and Matching Chapter 43: Statistical Pattern Recognition Chapter 44: Invariance in Pattern Recognition Chapter 45: Knowledge-based Recognition Chapter 46: Structural and Syntactic Pattern Recognition Chapter 47: Applications Including: Security, Medicine, Robotic, GIS, Remote Sensing, Industrial Inspection, Nondestructive Evaluation (or NDE), ... Chapter 48: Case studies and Emerging technologies

What People are Saying About This

From the Publisher

Discuss the latest in trends in imaging science, consisting of three intertwined computer science fields: Image Processing, Compter Vision, and Pattern Recognition.

From the B&N Reads Blog

Customer Reviews