Entity Information Life Cycle for Big Data: Master Data Management and Information Integration
Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. - Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems - Offers practical guidance to help you design and build an EIM system that will successfully handle big data - Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM - Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems - Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system - Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions
1125545610
Entity Information Life Cycle for Big Data: Master Data Management and Information Integration
Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. - Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems - Offers practical guidance to help you design and build an EIM system that will successfully handle big data - Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM - Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems - Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system - Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions
64.95 In Stock
Entity Information Life Cycle for Big Data: Master Data Management and Information Integration

Entity Information Life Cycle for Big Data: Master Data Management and Information Integration

by John R. Talburt, Yinle Zhou
Entity Information Life Cycle for Big Data: Master Data Management and Information Integration

Entity Information Life Cycle for Big Data: Master Data Management and Information Integration

by John R. Talburt, Yinle Zhou

eBook

$64.95 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Entity Information Life Cycle for Big Data walks you through the ins and outs of managing entity information so you can successfully achieve master data management (MDM) in the era of big data. This book explains big data's impact on MDM and the critical role of entity information management system (EIMS) in successful MDM. Expert authors Dr. John R. Talburt and Dr. Yinle Zhou provide a thorough background in the principles of managing the entity information life cycle and provide practical tips and techniques for implementing an EIMS, strategies for exploiting distributed processing to handle big data for EIMS, and examples from real applications. Additional material on the theory of EIIM and methods for assessing and evaluating EIMS performance also make this book appropriate for use as a textbook in courses on entity and identity management, data management, customer relationship management (CRM), and related topics. - Explains the business value and impact of entity information management system (EIMS) and directly addresses the problem of EIMS design and operation, a critical issue organizations face when implementing MDM systems - Offers practical guidance to help you design and build an EIM system that will successfully handle big data - Details how to measure and evaluate entity integrity in MDM systems and explains the principles and processes that comprise EIM - Provides an understanding of features and functions an EIM system should have that will assist in evaluating commercial EIM systems - Includes chapter review questions, exercises, tips, and free downloads of demonstrations that use the OYSTER open source EIM system - Executable code (Java .jar files), control scripts, and synthetic input data illustrate various aspects of CSRUD life cycle such as identity capture, identity update, and assertions

Product Details

ISBN-13: 9780128006658
Publisher: Morgan Kaufmann Publishers
Publication date: 04/20/2015
Sold by: Barnes & Noble
Format: eBook
Pages: 254
File size: 8 MB

About the Author

Dr. John R. Talburt is Professor of Information Science at the University of Arkansas at Little Rock (UALR) where he is the Coordinator for the Information Quality Graduate Program and the Executive Director of the UALR Center for Advanced Research in Entity Resolution and Information Quality (ERIQ). He is also the Chief Scientist for Black Oak Partners, LLC, an information quality solutions company. Prior to his appointment at UALR he was the leader for research and development and product innovation at Acxiom Corporation, a global leader in information management and customer data integration. Professor Talburt holds several patents related to customer data integration and the author of numerous articles on information quality and entity resolution, and is the author of Entity Resolution and Information Quality (Morgan Kaufmann, 2011). He also holds the IAIDQ Information Quality Certified Professional (IQCP) credential.Dr. Yinle Zhou is an IBM software architect and data scientist in the InfoSphere MDM development group in Austin, Texas, and also serves as an Affiliate Member of the Graduate Faculty at University of Arkansas at Little Rock (UALR). Dr. Zhou holds a PhD in Integrated Computing with Emphasis in Information Quality (IQ) from UALR where her doctoral research focused on modeling the management of entity identity information in entity resolution systems. She also holds a Master of Science in Information Quality from UALR, a Bachelor of Business Administration in Electronic Commerce from Nanjing University in China, and the Information Quality Certified Professional (IQCP) credential issued by the International Association for Information and Data Quality (IAIDQ). Her research and publications are in areas of information quality, identity management, entity and identity resolution, and social computing

Table of Contents

1. The Value Proposition for MDM and Big Data?2. What is entity information lifecycle management?3. Metrics for Quantifying Entity Integrity4. Identity Capture Deep Dive5. Identity Archiving and Disposal6. Identity Resolution7. Identity Update8. CSRUD for Big Data9. Toward Big Data Analytics10. Final Thoughts

What People are Saying About This

From the Publisher

Discover the details of managing entity information to successfully achieve master data management (MDM) in the era of big data.

“Entity resolution and identity information management are the major challenges in master

data management. John Talburt and Yinle Zhou have synthesized their considerable expertise

to address this challenge in the era of big data. Anyone who wants to manage data strategically

should start here.”

– Laura Sebastian-Coleman, Data Quality Center of Excellence Lead, Cigna

From the B&N Reads Blog

Customer Reviews