Essentials of Multivariate Data Analysis
Since most datasets contain a number of variables, multivariate methods are helpful in answering a variety of research questions. Accessible to students and researchers without a substantial background in statistics or mathematics, Essentials of Multivariate Data Analysis explains the usefulness of multivariate methods in applied research. Unlike most books on multivariate methods, this one makes straightforward analyses easy to perform for those who are unfamiliar with advanced mathematical formulae. An easily understood dataset is used throughout to illustrate the techniques. The accompanying add-in for Microsoft Excel can be used to carry out the analyses in the text. The dataset and Excel add-in are available for download on the book‘s CRC Press web page. Providing a firm foundation in the most commonly used multivariate techniques, this text helps readers choose the appropriate method, learn how to apply it, and understand how to interpret the results. It prepares them for more complex analyses using software such as Minitab, R, SAS, SPSS, and Stata.
1132743311
Essentials of Multivariate Data Analysis
Since most datasets contain a number of variables, multivariate methods are helpful in answering a variety of research questions. Accessible to students and researchers without a substantial background in statistics or mathematics, Essentials of Multivariate Data Analysis explains the usefulness of multivariate methods in applied research. Unlike most books on multivariate methods, this one makes straightforward analyses easy to perform for those who are unfamiliar with advanced mathematical formulae. An easily understood dataset is used throughout to illustrate the techniques. The accompanying add-in for Microsoft Excel can be used to carry out the analyses in the text. The dataset and Excel add-in are available for download on the book‘s CRC Press web page. Providing a firm foundation in the most commonly used multivariate techniques, this text helps readers choose the appropriate method, learn how to apply it, and understand how to interpret the results. It prepares them for more complex analyses using software such as Minitab, R, SAS, SPSS, and Stata.
250.0 In Stock
Essentials of Multivariate Data Analysis

Essentials of Multivariate Data Analysis

by Neil H. Spencer
Essentials of Multivariate Data Analysis

Essentials of Multivariate Data Analysis

by Neil H. Spencer

Hardcover

$250.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Since most datasets contain a number of variables, multivariate methods are helpful in answering a variety of research questions. Accessible to students and researchers without a substantial background in statistics or mathematics, Essentials of Multivariate Data Analysis explains the usefulness of multivariate methods in applied research. Unlike most books on multivariate methods, this one makes straightforward analyses easy to perform for those who are unfamiliar with advanced mathematical formulae. An easily understood dataset is used throughout to illustrate the techniques. The accompanying add-in for Microsoft Excel can be used to carry out the analyses in the text. The dataset and Excel add-in are available for download on the book‘s CRC Press web page. Providing a firm foundation in the most commonly used multivariate techniques, this text helps readers choose the appropriate method, learn how to apply it, and understand how to interpret the results. It prepares them for more complex analyses using software such as Minitab, R, SAS, SPSS, and Stata.

Product Details

ISBN-13: 9781138462434
Publisher: Taylor & Francis
Publication date: 11/13/2017
Pages: 186
Product dimensions: 5.44(w) x 8.50(h) x (d)

About the Author

Dr. Neil H. Spencer is a reader in applied statistics and director of the Statistical Services and Consultancy Unit at the University of Hertfordshire. His research interests include multilevel models, multivariate methods, statistical computing, multiple testing, and testing for randomness.

Table of Contents

Frequently Asked Questions. Graphical Presentation of Multivariate Data. Multivariate Tests of Significance. Factor Analysis. Cluster Analysis. Discriminant Analysis. Multidimensional Scaling. Correspondence Analysis. References. Index.
From the B&N Reads Blog

Customer Reviews