Experiments In Mathematics Using Maple / Edition 1

Experiments In Mathematics Using Maple / Edition 1

ISBN-10:
3540592849
ISBN-13:
9783540592846
Pub. Date:
11/22/1995
Publisher:
Springer Berlin Heidelberg
ISBN-10:
3540592849
ISBN-13:
9783540592846
Pub. Date:
11/22/1995
Publisher:
Springer Berlin Heidelberg
Experiments In Mathematics Using Maple / Edition 1

Experiments In Mathematics Using Maple / Edition 1

Paperback

$54.99
Current price is , Original price is $54.99. You
$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

The book is designed for use in school computer labs or with home computers running the computer algebra system Maple.

Product Details

ISBN-13: 9783540592846
Publisher: Springer Berlin Heidelberg
Publication date: 11/22/1995
Edition description: Softcover reprint of the original 1st ed. 1995
Pages: 465
Product dimensions: 6.10(w) x 9.25(h) x 0.05(d)

Table of Contents

I Pre-Calculus Mathematics.- 1 Introduction to Maple.- 1.1 Documentation.- 1.2 First Maple Session.- 1.2.1 Basic Operations.- 1.2.2 Solving Equations.- 1.3 More Commands.- 1.3.1 Calling Function Packages.- 1.3.2 Isolating Variables.- 1.3.3 Variable Names.- 1.3.4 Syntax.- 1.3.5 Assigning Variables.- 1.3.6 Ditto.- 1.3.7 Notation of Mathematical Expressions.- 1.3.8 Commonly Used Commands.- 1.4 Plots.- 1.4.1 Options.- 1.4.2 Text.- 1.4.3 Implicit Plots.- 1.4.4 3D Plots.- 1.4.5 Animations.- 1.5 Preparing Worksheets for Printing.- 2 Functions.- 2.1 Relations and Functions.- 2.2 Multiplication by a Real Number.- 2.3 Addition and Subtraction of Functions.- 2.4 Multiplication and Division of Functions.- 2.5 Composition of Functions.- 2.6 Inverse Functions.- 3 Quadratic Functions.- 3.1 Quadratic Functions.- 3.2 Parabola.- 3.3 Vertex.- 3.4 Maximum and Minimum Values.- 3.5 Applications of Quadratic Functions.- 4 Solving Quadratic Equations.- 4.1 Roots of Quadratic Equations.- 4.2 Nature of Roots of Quadratic Equations.- 4.3 Quadratic Equations in Other Variables.- 4.4 Linear-Quadratic Systems.- 4.5 Slope of a Tangent to a Parabola.- 5 Polynomial Functions.- 5.1 Polynomial Functions.- 5.2 Division of Polynomials.- 5.3 Product and Sum of Roots.- 5.4 Related Roots.- 5.5 Roots of Higher Order Polynomials.- 6 Exponential Functions.- 6.1 Properties of Exponentials.- 6.2 Scientific Notation.- 6.3 Table of Values.- 6.4 Exponential Growth and Decay.- 7 Logarithmic Functions.- 7.1 Properties of Logarithms.- 7.3 pH Scale.- 7.4 Simple Interest.- 7.5 Compound Interest.- 7.6 Equivalent Rates.- 8 Circular Functions.- 8.1 Primary Trigonometric Functions.- 8.2 Reciprocal Trigonometric Functions.- 8.3 Inverse Circular Functions.- 8.4 Transformations.- 8.5 Addition of Circular Functions.- 8.6 Simple Harmonic Motion.- 9 Trigonometry.- 9.1 Basic Trigonometry.- 9.2 Trigonometric Identities.- 9.3 Trigonometric Equations.- 9.4 Power Series Expansions.- 9.5 Right-Angled Triangles.- 9.6 Law of Sines.- 9.7 Law of Cosines.- 9.8 Vectors.- 9.8.1 Dot Product.- 9.9 Bisector of a Triangle.- 10 Similar Figures.- 10.1 Similar Figures.- 10.1.1 Similar Triangles.- 10.2 Length of a Perpendicular.- 10.3 Areas of Similar Triangles.- 10.4 Dilatations and Similar Figures.- 11 Circles and Spheres.- 11.1 Circle.- 11.1.1 Intersection of a Line and a Circle.- 11.1.2 Tangent to a Circle.- 11.1.3 Arc Length.- 11.1.4 Area Bounded by a Circle.- 11.2 Sphere.- 11.2.1 Intersection of a Plane and a Sphere.- 11.2.2 Volume and Surface Area.- 12 Loci.- 12.1 Locus.- 12.2 Equations and Inequations of a Locus.- 12.3 Circles Associated with a Triangle.- 12.3.1 Circumcircle and Circumcentre.- 12.3.2 Inscribed Circle and Incentre.- 12.3.3 Bisectors of Interior Angles.- 12.3.4 Exscribed Circles and E-Centres.- 12.3.5 Centroid of a Triangle.- 12.3.6 Orthocentre of a Triangle.- 12.4 Equations of Loci After a Transformation.- 12.4.1 Translation.- 12.4.2 Stretch.- 12.4.3 Reflection.- 12.4.4 Dilatation.- 12.5 Simulations.- 13 Sequences and Series.- 13.1 Sequences.- 13.1.1 Arithmetic Sequences.- 13.1.2 Geometric Sequences.- 13.2 Series.- 13.2.1 Arithmetic Series.- 13.2.2 Geometric Series.- 14 Statistics and Probability.- 14.1 Organizing and Presenting Data.- 14.1.1 Plots.- 14.1.2 Mean, Median, Mode, and Standard Deviation.- 14.2 Probability of Events.- 14.2.1 Binomial Theorem.- II Beginning Calculus.- 15 Secants and Tangents.- 15.1 Slope of a Line.- 15.2 Slope of a Secant.- 15.3 Slope of a Tangent.- 15.4 Equation of the Tangent to a Curve.- 16 Sequences and Limits.- 16.1 Sequences.- 16.2 Limit of an Infinite Sequence.- 16.3 Sum of an Infinite Geometric Series.- 16.4 Limit of a Function.- 16.5 Rules for Limits.- 16.5.1 Constants Rule.- 16.5.2 Sum Rule.- 16.5.3 Product Rule.- 16.5.4 Quotient Rule.- 16.5.5 Exponential Rule.- 16.5.6 Inequality Rule.- 16.5.7 Sandwich Rule.- 16.5.8 Squeeze Rule.- 16.6 Continuous Functions.- 16.7 Limits Involving $$\frac{0}{0}$$.- 17 Derivatives of Functions.- 17.1 Derivative.- 17.2 Differentiating from First Principles.- 17.3 Rules of Differentiation.- 17.3.1 Derivative of a Constant.- 17.3.2 Power Rule.- 17.3.3 Derivative of a Sum of Functions.- 17.3.4 Chain Rule.- 17.3.5 Product Rule.- 17.3.6 Quotient Rule.- 17.4 Higher Order Derivatives.- 17.5 Notation.- 17.6 Implicit Differentiation.- 18 Functions and Graphs.- 18.1 Plotting Functions.- 18.2 X- and Y-Intercepts.- 18.3 Asymptotes.- 18.3.1 Vertical Asymptotes.- 18.3.2 Horizontal Asymptotes.- 18.3.3 Oblique Asymptotes.- 18.4 Symmetry.- 18.5 Increasing and Decreasing Functions.- 18.6 Concavity.- 18.7 Relative Maxima and Minima.- 18.8 Inflection Point.- 18.9 Plot of f(x).- 19 Rates.- 19.1 Position, Velocity, and Acceleration.- 19.2 Rate of Change.- 19.3 Related Rates of Change.- 20 Integration.- 20.1 Approximation of the Area Under a Curve.- 20.2 Definite Integral.- 20.3 Indefinite Integral.- 20.4 Fundamental Theorem of Calculus.- 20.5 Rules of Integration.- 20.5.1 Sum of Functions.- 20.5.2 Function Times a Constant.- 20.5.3 Power Rule.- 20.6 Area Between Curves.- 20.7 Differential Equations.- 20.8 Integration by Parts.- 20.9 Partial Fractions.- 20.10 Numerical Integration.- 20.10.1 Trapezoidal Rule.- 20.10.2 Simpson’s Rule.- 21 Trigonometry.- 21.1 Compound Angles.- 21.2 Graphs of Trigonometric Functions.- 21.3 Derivative of Sine Function.- 21.4 Derivatives of Trigonometric Functions.- 21.5 Maxima and Minima.- 21.6 Integrals of Trigonometric Functions.- 21.7 Areas Defined by Trigonometric Functions.- 22 Exponents and Logarithms.- 22.1 Base for Natural Logarithm.- 22.2 Exponential Growth and Decay.- 22.3 Derivatives.- 22.4 Integrals.- 23 Polar Coordinates.- 23.1 Converting Coordinates.- 23.2 Circles in Polar Coordinates.- 23.3 Area in Polar Coordinates.- 23.3.1 Sector of a Circle.- 23.3.2 Region Enclosed by a Curve.- Appendices.- A Solutions to Part I Exercises.- A.1 Functions.- A.2 Quadratics.- A.3 Solving Quadratics.- A.4 Polynomials.- A.5 Exponential Functions.- A.6 Logarithmic Functions.- A.8 Trigonometry.- A.9 Similar Figures.- A.10 Circles and Spheres.- A.11 Loci.- A.12 Sequences and Series.- A.13 Statistics and Probability.- B Solutions to Part II Exercises.- B.1 Secants and Tangents.- B.2 Sequences and Limits.- B.3 Derivatives of Functions.- B.4 Functions and Graphs.- B.5 Rates.- B.6 Integration.- B.7 Trigonometry.- B.8 Exponents and Logarithms.- B.9 Polar Coordinates.- C.1 angles.- C.2 showAntiderivative.
From the B&N Reads Blog

Customer Reviews