Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.

The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.

1133678898
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.

The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.

109.0 In Stock
Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth

eBook1st ed. 2017 (1st ed. 2017)

$109.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Exploring the Riemann Zeta Function: 190 years from Riemann's Birth presents a collection of chapters contributed by eminent experts devoted to the Riemann Zeta Function, its generalizations, and their various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis, Probability Theory, and related subjects.

The book focuses on both old and new results towards the solution of long-standing problems as well as it features some key historical remarks. The purpose of this volume is to present in a unified way broad and deep areas of research in a self-contained manner. It will be particularly useful for graduate courses and seminars as well as it will make an excellent reference tool for graduate students and researchers in Mathematics, Mathematical Physics, Engineering and Cryptography.


Product Details

ISBN-13: 9783319599694
Publisher: Springer-Verlag New York, LLC
Publication date: 09/11/2017
Sold by: Barnes & Noble
Format: eBook
Pages: 298
File size: 5 MB

About the Author

Michael Th. Rassias is a Postdoctoral researcher at the Institute of Mathematics of the University of Zürich and a visiting researcher at the Program in Interdisciplinary Studies of the Institute for Advanced Study, Princeton.

Table of Contents

Preface (Dyson).- 1. An introduction to Riemann's life, his mathematics, and his work on the zeta function (R. Baker).- 2. Ramanujan's formula for zeta (2n+1) (B.C. Berndt, A. Straub).- 3. Towards a fractal cohomology: Spectra of Polya-Hilbert operators, regularized determinants, and Riemann zeros (T. Cobler, M.L. Lapidus).- The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 4. The Temptation of the Exceptional Characters (J.B. Friedlander, H. Iwaniec).- 5. Arthur's truncated Eisenstein series for SL(2,Z) and the Riemann Zeta Function, A Survey (D. Goldfield).- 6. On a Cubic moment of Hardy's function with a shift (A. Ivic).- 7. Some analogues of pair correlation of Zeta Zeros (Y. Karabulut, C.Y. Yıldırım).- 8. Bagchi's Theorem for families of automorphic forms (E. Kowalski).- 9. The Liouville function and the Riemann hypothesis (M.J. Mossinghoff, T.S. Trudgian).- 10. Explorations in the theory of partition zeta functions (K. Ono, L. Rolen, R. Schneider).- 11. Reading Riemann (S.J. Patterson).- 12. A Taniyama product for the Riemann zeta function (D.E. Rohrlichłł).
From the B&N Reads Blog

Customer Reviews