Foundations of Deep Reinforcement Learning: Theory and Practice in Python
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work.
This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python.
  • Understand each key aspect of a deep RL problem
  • Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)
  • Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)
  • Understand how algorithms can be parallelized synchronously and asynchronously
  • Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work
  • Explore algorithm benchmark results with tuned hyperparameters
  • Understand how deep RL environments are designed
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
1132856052
Foundations of Deep Reinforcement Learning: Theory and Practice in Python
The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work.
This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python.
  • Understand each key aspect of a deep RL problem
  • Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)
  • Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)
  • Understand how algorithms can be parallelized synchronously and asynchronously
  • Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work
  • Explore algorithm benchmark results with tuned hyperparameters
  • Understand how deep RL environments are designed
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
47.99 In Stock
Foundations of Deep Reinforcement Learning: Theory and Practice in Python

Foundations of Deep Reinforcement Learning: Theory and Practice in Python

Foundations of Deep Reinforcement Learning: Theory and Practice in Python

Foundations of Deep Reinforcement Learning: Theory and Practice in Python

eBook

$47.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice

Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics.

Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work.
This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python.
  • Understand each key aspect of a deep RL problem
  • Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER)
  • Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO)
  • Understand how algorithms can be parallelized synchronously and asynchronously
  • Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work
  • Explore algorithm benchmark results with tuned hyperparameters
  • Understand how deep RL environments are designed
Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Product Details

ISBN-13: 9780135172483
Publisher: Pearson Education
Publication date: 11/20/2019
Series: Addison-Wesley Data & Analytics Series
Sold by: Barnes & Noble
Format: eBook
Pages: 416
File size: 23 MB
Note: This product may take a few minutes to download.
Age Range: 18 Years

About the Author

Laura Graesser is a research software engineer working in robotics at Google. She holds a master’s degree in computer science from New York University, where she specialized in machine learning.

Wah Loon Keng is an AI engineer at Machine Zone, where he applies deep reinforcement learning to industrial problems. He has a background in both theoretical physics and computer science.

Table of Contents

  • Chapter 1: Introduction to Reinforcement Learning
  • Part I: Policy-Based and Value-Based Algorithms
  • Chapter 2: Policy Gradient
  • Chapter 3: State Action Reward State Action
  • Chapter 4: Deep Q-Networks
  • Chapter 5: Improving Deep Q-Networks
  • Part II: Combined Methods
  • Chapter 6: Advantage Actor-Critic
  • Chapter 7: Proximal Policy Optimization
  • Chapter 8: Parallelization Methods
  • Chapter 9: Algorithm Summary
  • Part III: Practical Tips
  • Chapter 10: Getting Reinforcement Learning to Work
  • Chapter 11: SLM Lab
  • Chapter 12: Network Architectures
  • Chapter 13: Hardward
  • Chapter 14: Environment Design
  • Epilogue
  • Appendix A: Deep Reinforcement Learning Timeline
  • Appendix B: Example Environments
  • References
  • Index
From the B&N Reads Blog

Customer Reviews