Fourier Integral Operators / Edition 1

Fourier Integral Operators / Edition 1

by J.J. Duistermaat
ISBN-10:
0817681078
ISBN-13:
9780817681074
Pub. Date:
11/11/2010
Publisher:
Birkh�user Boston
ISBN-10:
0817681078
ISBN-13:
9780817681074
Pub. Date:
11/11/2010
Publisher:
Birkh�user Boston
Fourier Integral Operators / Edition 1

Fourier Integral Operators / Edition 1

by J.J. Duistermaat

Paperback

$69.99
Current price is , Original price is $69.99. You
$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

This volume is a useful introduction to the subject of Fourier Integral Operators and is based on the author's classic set of notes. Covering a range of topics from Hörmander's exposition of the theory, Duistermaat approaches the subject from symplectic geometry and includes application to hyperbolic equations (= equations of wave type) and oscillatory asymptotic solutions which may have caustics. This text is suitable for mathematicians and (theoretical) physicists with an interest in (linear) partial differential equations, especially in wave propagation, rep. WKB-methods.


Product Details

ISBN-13: 9780817681074
Publisher: Birkh�user Boston
Publication date: 11/11/2010
Series: Modern Birkh�user Classics
Edition description: 2011
Pages: 142
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

About the Author

Hans Duistermaat was a geometric analyst, who unexpectedly passed away in March 2010. His research encompassed many different areas in mathematics: ordinary differential equations, classical mechanics, discrete integrable systems, Fourier integral operators and their application to partial differential equations and spectral problems, singularities of mappings, harmonic analysis on semisimple Lie groups, symplectic differential geometry, and algebraic geometry. He was co-author of eleven books.

Duistermaat was affiliated to the Mathematical Institute of Utrecht University since 1974 as a Professor of Pure and Applied Mathematics. During the last five years he was honored with a special professorship at Utrecht University endowed by the Royal Netherlands Academy of Arts and Sciences. He was also a member of the Academy since 1982. He had 23 PhD students.

Table of Contents

Preface.- 0. Introduction.- 1. Preliminaries.- 1.1 Distribution densities on manifolds.- 1.2 The method of stationary phase.- 1.3 The wave front set of a distribution.- 2. Local Theory of Fourier Integrals.- 2.1 Symbols.- 2.2 Distributions defined by oscillatory integrals.- 2.3 Oscillatory integrals with nondegenerate phase functions.- 2.4 Fourier integral operators (local theory).- 2.5 Pseudodifferential operators in Rn.- 3. Symplectic Differential Geometry.- 3.1 Vector fields.- 3.2 Differential forms.- 3.3 The canonical 1- and 2-form T* (X).- 3.4 Symplectic vector spaces.- 3.5 Symplectic differential geometry.- 3.6 Lagrangian manifolds.- 3.7 Conic Lagrangian manifolds.- 3.8 Classical mechanics and variational calculus.- 4. Global Theory of Fourier Integral Operators.- 4.1 Invariant definition of the principal symbol.- 4.2 Global theory of Fourier integral operators.- 4.3 Products with vanishing principal symbol.- 4.4 L2-continuity.- 5. Applications.- 5.1 The Cauchy problem for strictly hyperbolic differential operators with C-infinity coefficients.- 5.2 Oscillatory asymptotic solutions. Caustics.- References.
From the B&N Reads Blog

Customer Reviews