Game Physics
Create physically realistic 3D Graphics environments with this introduction to the ideas and techniques behind the process. Author David H. Eberly includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them.
1100526699
Game Physics
Create physically realistic 3D Graphics environments with this introduction to the ideas and techniques behind the process. Author David H. Eberly includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them.
140.0 In Stock
Game Physics

Game Physics

by David H. Eberly
Game Physics

Game Physics

by David H. Eberly

eBook

$140.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Create physically realistic 3D Graphics environments with this introduction to the ideas and techniques behind the process. Author David H. Eberly includes simulations to introduce the key problems involved and then gradually reveals the mathematical and physical concepts needed to solve them.

Product Details

ISBN-13: 9781498717564
Publisher: CRC Press
Publication date: 04/05/2010
Sold by: Barnes & Noble
Format: eBook
Pages: 944
File size: 5 MB

About the Author

Dave Eberly is the president of Geometric Tools, Inc. (www.geometrictools.com), a company that specializes in software development for computer graphics, image analysis, and numerical methods. Previously, he was the director of engineering at Numerical Design Ltd. (NDL), the company responsible for the real-time 3D game engine, NetImmerse. He also worked for NDL on Gamebryo, which was the next-generation engine after NetImmerse. His background includes a BA degree in mathematics from Bloomsburg University, MS and PhD degrees in mathematics from the University of Colorado at Boulder, and MS and PhD degrees in computer science from the University of North Carolina at ChapelHill. He is the author of 3D Game Engine Design, 2nd Edition (2006), 3D Game Engine Architecture (2005), Game Physics (2004), and coauthor with Philip Schneider of Geometric Tools for Computer Graphics (2003), all published by Morgan Kaufmann. As a mathematician, Dave did research in the mathematics of combustion, signal and image processing, and length-biased distributions in statistics. He was an associate professor at the University of Texas at San Antonio with an adjunct appointment in radiology at the U.T. Health Science Center at San Antonio. In 1991, he gave up his tenured position to re-train in computer science at the University of North Carolina. After graduating in 1994, he remained for one year as a research associate professor in computer science with a joint appointment in the Department of Neurosurgery, working in medical image analysis. His next stop was the SAS Institute, working for a year on SAS/Insight, a statistical graphics package. Finally, deciding that computer graphics and geometry were his real calling, Dave went to work for NDL (which is now Emergent Game Technologies), then to Magic Software, Inc., which later became Geometric Tools, Inc. Dave's participation in the newsgroup comp.graphics.algorit

Table of Contents

Game Physics 1st edition1 A Brief History of the World: A Summary of the Topics 2 Basic Concepts 3 Rigid Body Motion 4 Deformable Bodies 5 Physics Engines 6 Physics and Shader Programs 7 Linear Complementarity and Mathematical Programming 8 Differential Equations 9 Numerical Methods 10 Quaternions Appendices A Linear Algebra B Affine Algebra C Calculus D Ordinary Difference Equations A Summary of the Changes for the 2nd Edition:Naturally, Chapter 1 (Introduction) will be rewritten based on the contents for the second edition. The chapter on Physics Engines needs a significant rewrite. The goal will be to describe how to implement a classic rigid-body physics engine. And there will be source code to go with it, illustrating a generic collision detection system to go with the collision response people seem to associate with a physics engine. I will also include a new section on ragdoll physics, and there will be source code to go with this. I plan on inserting a new chapter (chapter 6 below) that will contain descriptions of various papers of interest in game physics. In particular, I will review publications by Ronald Fedkiw, Jos Stam, and James O'Brien, choosing a few of each to describe and to implement in source code and include on the CDROM for the book. This new material fills the void in the 1st edition - not much discussion of applications of particle systems, fluids, or gases. The chapter on shader programs (old Chapter 6) will be discarded in its entirety. Chapters 7 through 10 and Appendices A through D form the mathematical heart of the book. The appendices are effectively background m

What People are Saying About This

From the Publisher

"I keep at most a dozen reference texts within easy reach of my workstation computer. This book will replace two of them."—Ian Ashdown, President, byHeart Consultants Limited

From the B&N Reads Blog

Customer Reviews