Generalized Boltzmann Physical Kinetics
The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids. It was shown by Prof. B. Alexeev that well-known Boltzmann equation, which is the basement of the classical kinetic theory, is wrong in the definite sense. Namely in the Boltzmann equation should be introduced the additional terms which generally speaking are of the same order of value as classical ones. It leads to dramatic changing in transport theory. The coincidence of experimental and theoretical data became much better. Particularly it leads to the strict theory of turbulence and possibility to calculate the turbulent flows from the first principles of physics.·Boltzmann equation (BE) is valid only for particles, which can be considered as material points, generalized Boltzmann equation (GBE) removes this restriction.·GBE contains additional terms in comparison with BE, which cannot be omitted·GBE leads to strict theory of turbulence·GBE gives all micro-scale turbulent fluctuations in tabulated closed analytical form for all flows ·GBE leads to generalization of electro-dynamic Maxwell equations·GBE gives new generalized hydrodynamic equations (GHE) more effective than classic Navier-Stokes equations·GBE can be applied for description of flows for intermediate diapason of Knudsen numbers·Asymptotical solutions of GBE remove contradictions in the theory of Landau damping in plasma
1100695367
Generalized Boltzmann Physical Kinetics
The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids. It was shown by Prof. B. Alexeev that well-known Boltzmann equation, which is the basement of the classical kinetic theory, is wrong in the definite sense. Namely in the Boltzmann equation should be introduced the additional terms which generally speaking are of the same order of value as classical ones. It leads to dramatic changing in transport theory. The coincidence of experimental and theoretical data became much better. Particularly it leads to the strict theory of turbulence and possibility to calculate the turbulent flows from the first principles of physics.·Boltzmann equation (BE) is valid only for particles, which can be considered as material points, generalized Boltzmann equation (GBE) removes this restriction.·GBE contains additional terms in comparison with BE, which cannot be omitted·GBE leads to strict theory of turbulence·GBE gives all micro-scale turbulent fluctuations in tabulated closed analytical form for all flows ·GBE leads to generalization of electro-dynamic Maxwell equations·GBE gives new generalized hydrodynamic equations (GHE) more effective than classic Navier-Stokes equations·GBE can be applied for description of flows for intermediate diapason of Knudsen numbers·Asymptotical solutions of GBE remove contradictions in the theory of Landau damping in plasma
210.0 In Stock
Generalized Boltzmann Physical Kinetics

Generalized Boltzmann Physical Kinetics

by Boris V. Alexeev
Generalized Boltzmann Physical Kinetics

Generalized Boltzmann Physical Kinetics

by Boris V. Alexeev

eBook

$210.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids. It was shown by Prof. B. Alexeev that well-known Boltzmann equation, which is the basement of the classical kinetic theory, is wrong in the definite sense. Namely in the Boltzmann equation should be introduced the additional terms which generally speaking are of the same order of value as classical ones. It leads to dramatic changing in transport theory. The coincidence of experimental and theoretical data became much better. Particularly it leads to the strict theory of turbulence and possibility to calculate the turbulent flows from the first principles of physics.·Boltzmann equation (BE) is valid only for particles, which can be considered as material points, generalized Boltzmann equation (GBE) removes this restriction.·GBE contains additional terms in comparison with BE, which cannot be omitted·GBE leads to strict theory of turbulence·GBE gives all micro-scale turbulent fluctuations in tabulated closed analytical form for all flows ·GBE leads to generalization of electro-dynamic Maxwell equations·GBE gives new generalized hydrodynamic equations (GHE) more effective than classic Navier-Stokes equations·GBE can be applied for description of flows for intermediate diapason of Knudsen numbers·Asymptotical solutions of GBE remove contradictions in the theory of Landau damping in plasma

Product Details

ISBN-13: 9780080478012
Publisher: Elsevier Science
Publication date: 05/25/2004
Sold by: Barnes & Noble
Format: eBook
Pages: 376
File size: 11 MB
Note: This product may take a few minutes to download.

About the Author

Professor Boris V. Alexeev is Head of the Centre of the Theoretical Foundations of Nanotechnology and Head of the Physics Department at the Moscow Lomonosov University of Fine Chemical Technologies, Moscow, Russia. In the 1990s he was Visiting Professor at the University of Alabama, Huntsville, AL, USA, and Visiting Professor at the University of Provence, Marseille, France. Professor Alexeev has published over 290 articles in international scientific journals and 22 books. He has received several honors and awards, and is member of six societies.

Table of Contents

PrefaceHistorical introduction and the problem formulationChapter 1. Generalized Boltzmann EquationChapter 2. Theory of generalized hydrodynamic equationsChapter 3. Strict theory of turbulence and some applications of the generalized hydrodynamic theoryChapter 4. Physics of a weakly ionized gasChapter 5. Kinetic coefficients in the theory of the generalized kinetic equationsChapter 6. Some applications of the generalized Boltzmann physical kineticsChapter 7. Numerical simulation of vortex gas flow using the generalized Euler equationsChapter 8. Generalized Boltzmann physical kinetics in physics of plasma and liquidsAppendix 1. Derivation of energy equation for invariant E_alpha = (m_alpha V_alpha^2)/2 + epsilon_alphaAppendix 2. Three-diagonal method of Gauss elimination technique for the differential third order equationAppendix 3. Some integral calculations in the generalized Navier-Stokes approximationAppendix 4. Three-diagonal method of Gauss elimination technique for the differential second order equationAppendix 5. Characteristic scales in plasma physicsAppendix 6. Dispersion relations in the generalized Boltzmann kinetic theory neglecting the integral collision termReferencesSubject index

What People are Saying About This

From the Publisher

The most important result obtained by Prof. B. Alexeev and reflected in the book is connected with new theory of transport processes in gases, plasma and liquids.

From the B&N Reads Blog

Customer Reviews