Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions.

This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection.

  • Learn how graph analytics vary from conventional statistical analysis
  • Understand how classic graph algorithms work, and how they are applied
  • Get guidance on which algorithms to use for different types of questions
  • Explore algorithm examples with working code and sample datasets from Spark and Neo4j
  • See how connected feature extraction can increase machine learning accuracy and precision
  • Walk through creating an ML workflow for link prediction combining Neo4j and Spark
1130026894
Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions.

This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection.

  • Learn how graph analytics vary from conventional statistical analysis
  • Understand how classic graph algorithms work, and how they are applied
  • Get guidance on which algorithms to use for different types of questions
  • Explore algorithm examples with working code and sample datasets from Spark and Neo4j
  • See how connected feature extraction can increase machine learning accuracy and precision
  • Walk through creating an ML workflow for link prediction combining Neo4j and Spark
67.99 In Stock
Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Graph Algorithms: Practical Examples in Apache Spark and Neo4j

Graph Algorithms: Practical Examples in Apache Spark and Neo4j

eBook

$67.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your machine learning models. You’ll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. Whether you are trying to build dynamic network models or forecast real-world behavior, this book illustrates how graph algorithms deliver value—from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions.

This practical book walks you through hands-on examples of how to use graph algorithms in Apache Spark and Neo4j—two of the most common choices for graph analytics. Also included: sample code and tips for over 20 practical graph algorithms that cover optimal pathfinding, importance through centrality, and community detection.

  • Learn how graph analytics vary from conventional statistical analysis
  • Understand how classic graph algorithms work, and how they are applied
  • Get guidance on which algorithms to use for different types of questions
  • Explore algorithm examples with working code and sample datasets from Spark and Neo4j
  • See how connected feature extraction can increase machine learning accuracy and precision
  • Walk through creating an ML workflow for link prediction combining Neo4j and Spark

Product Details

ISBN-13: 9781492047636
Publisher: O'Reilly Media, Incorporated
Publication date: 05/16/2019
Sold by: Barnes & Noble
Format: eBook
Pages: 268
File size: 18 MB
Note: This product may take a few minutes to download.

About the Author

Mark Needham is a graph advocate and Developer Relations Engineer at Neo4j. Mark helps users embrace graphs and Neo4j, building sophisticated solutions to challenging data problems. Mark has deep expertise in graph data having previously helped to build Neo4j's Causal Clustering system. Mark writes about his experiences of being a graphista on a popular blog at markhneedham.com.


Amy Hodler is a network science devotee and AI and Graph Analytics Program Manager at Neo4j. She promotes the use of graph analytics to reveal structures within real-world networks and predict dynamic behavior. Amy helps teams apply novel approaches to generate new opportunities at companies such as EDS, Microsoft, Hewlett-Packard (HP), Hitachi IoT, and Cray Inc. Amy has a love for science and art with a fascination for complexity studies and graph theory.

From the B&N Reads Blog

Customer Reviews