×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Graph-based Natural Language Processing and Information Retrieval
     

Graph-based Natural Language Processing and Information Retrieval

by Rada Mihalcea
 

See All Formats & Editions

Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of

Overview

Graph theory and the fields of natural language processing and information retrieval are well-studied disciplines. Traditionally, these areas have been perceived as distinct, with different algorithms, different applications and different potential end-users. However, recent research has shown that these disciplines are intimately connected, with a large variety of natural language processing and information retrieval applications finding efficient solutions within graph-theoretical frameworks. This book extensively covers the use of graph-based algorithms for natural language processing and information retrieval. It brings together topics as diverse as lexical semantics, text summarization, text mining, ontology construction, text classification and information retrieval, which are connected by the common underlying theme of the use of graph-theoretical methods for text and information processing tasks. Readers will come away with a firm understanding of the major methods and applications in natural language processing and information retrieval that rely on graph-based representations and algorithms.

Product Details

ISBN-13:
9781107386631
Publisher:
Cambridge University Press
Publication date:
04/11/2011
Sold by:
Barnes & Noble
Format:
NOOK Book
File size:
10 MB

Meet the Author

Rada Mihalcea is an Associate Professor in the Department of Computer Science and Engineering at the University of North Texas, where she leads the Language and Information Technologies research group. In 2009, she received the Presidential Early Career Award for Scientists and Engineers, awarded by President Barack Obama. She served on the editorial board of several journals, including Computational Linguistics, the Journal of Natural Language Engineering and Language Resources and Evaluations, and she co-chaired the Empirical Methods in Natural Language Processing conference in 2009 and the Association for Computational Linguistics conference in 2011. She has been published in IEEE Intelligent Systems, the Journal of Natural Language Engineering, the Journal of Machine Translation, Computational Intelligence, the International Journal of Semantic Computing and Artificial Intelligence Magazine.
Dragomir Radev is a Professor in the School of Information, the Department of Electrical Engineering and Computer Science, and the Department of Linguistics at the University of Michigan, where he is leader of the Computational Linguistics and Information Retrieval research group (CLAIR). He has more than 100 publications in conferences and journals such as Communications of the ACM, the Journal of Artificial Intelligence Research, Bioinformatics, Computational Linguistics, Information Processing and Management and the American Journal of Political Science, among others. He is on the editorial boards of Information Retrieval, the Journal of Natural Language Engineering and the Journal of Artificial Intelligence Research. Radev is an ACM distinguished scientist as well as the coach of the US high school team in computational linguistics.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews