Handbook of Complex Analysis
Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)
1100695674
Handbook of Complex Analysis
Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)
235.0 In Stock
Handbook of Complex Analysis

Handbook of Complex Analysis

Handbook of Complex Analysis

Handbook of Complex Analysis

eBook

$235.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Geometric Function Theory is a central part of Complex Analysis (one complex variable). The Handbook of Complex Analysis - Geometric Function Theory deals with this field and its many ramifications and relations to other areas of mathematics and physics. The theory of conformal and quasiconformal mappings plays a central role in this Handbook, for example a priori-estimates for these mappings which arise from solving extremal problems, and constructive methods are considered. As a new field the theory of circle packings which goes back to P. Koebe is included. The Handbook should be useful for experts as well as for mathematicians working in other areas, as well as for physicists and engineers.· A collection of independent survey articles in the field of GeometricFunction Theory · Existence theorems and qualitative properties of conformal and quasiconformal mappings · A bibliography, including many hints to applications in electrostatics, heat conduction, potential flows (in the plane)

Product Details

ISBN-13: 9780080532813
Publisher: North Holland
Publication date: 12/05/2002
Sold by: Barnes & Noble
Format: eBook
Pages: 548
File size: 11 MB
Note: This product may take a few minutes to download.

Table of Contents

Preface.List of Contributors.Univalent and multivalent functions (W.K. Hayman).Conformal maps at the boundary (Ch. Pommerenke).Extremal quasiconformal mapings of the disk (E. Reich).Conformal welding (D.H. Hamilton).Siegel disks and geometric function theory in the work of Yoccoz (D.H. Hamilton).Sufficient confidents for univalence and quasiconformal extendibility of analytic functions (L.A. Aksent'ev, P.L. Shabalin).Bounded univalent functions (D.V. Prokhorov).The *-function in complex analysis (A. Baernstein II).Logarithmic geometry, exponentiation, and coefficient bounds in the theory of univalent functions and nonoverlapping domains (A.Z. Grinshpan).Circle packing and discrete analytic function theory (K. Stephenson).Extreme points and support points (T.H. MacGregory, D.R. Wilken).The method of the extremal metric (J.A. Jenkins).Universal Teichmüller space (F.P. Gardiner, W.J. Harvey).Application of conformal and quasiconformal mappings and their properties in approximation theory (V.V. Andrievskii).Author Index.Subject Index.
From the B&N Reads Blog

Customer Reviews