Handbook of Silicon Based MEMS Materials and Technologies
A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications.

Key topics covered include:

  • Silicon as MEMS material
  • Material properties and measurement techniques
  • Analytical methods used in materials characterization
  • Modeling in MEMS
  • Measuring MEMS
  • Micromachining technologies in MEMS
  • Encapsulation of MEMS components
  • Emerging process technologies, including ALD and porous silicon

Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities.

  • Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland.
  • Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland.
  • Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland.
  • Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan.
1133983762
Handbook of Silicon Based MEMS Materials and Technologies
A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications.

Key topics covered include:

  • Silicon as MEMS material
  • Material properties and measurement techniques
  • Analytical methods used in materials characterization
  • Modeling in MEMS
  • Measuring MEMS
  • Micromachining technologies in MEMS
  • Encapsulation of MEMS components
  • Emerging process technologies, including ALD and porous silicon

Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities.

  • Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland.
  • Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland.
  • Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland.
  • Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan.
290.0 In Stock

eBook

$290.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications.

Key topics covered include:

  • Silicon as MEMS material
  • Material properties and measurement techniques
  • Analytical methods used in materials characterization
  • Modeling in MEMS
  • Measuring MEMS
  • Micromachining technologies in MEMS
  • Encapsulation of MEMS components
  • Emerging process technologies, including ALD and porous silicon

Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities.

  • Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland.
  • Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland.
  • Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland.
  • Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan.

Product Details

ISBN-13: 9780128177877
Publisher: Elsevier Science
Publication date: 04/17/2020
Series: Micro and Nano Technologies
Sold by: Barnes & Noble
Format: eBook
Pages: 1026
File size: 87 MB
Note: This product may take a few minutes to download.

About the Author

Markku Tilli obtained a degree in Materials Science (Physical Metallurgy) at Helsinki University of Technology (HUT) in 1974. Until 1980 he had various research and teaching positions at HUT specializing in crystal growth technologies. From 1981 to 1984 he managed process research and development in Silicon project at HUT silicon wafer manufacturing pilot plant. Since 1985 he has had various managing positions at Okmetic in research, development and customer support areas, and held a position of Senior Vice President, Research until his retirement in 2018. His MEMS related activities started in 1982 when he developed a process to make double side polished silicon wafers for bulk micromachined sensors. Since then he has developed advanced new silicon wafer types for MEMS, including special epitaxial wafers, SOI and SOI wafers with buried cavities. His publication topics include oxygen precipitation in silicon, silicon crystal growth, wafer cleaning as well as silicon wafer manufacturing technologies and applications in MEMS. He is member of the Technology Academy of Finland and has received the honorary degree of Doctor of Science in Engineering from Aalto University.

Dr. Mervi Paulasto-Kröckel is professor at Aalto University School of Electrical Engineering in Finland. She studied materials science and semiconductor technology in Helsinki University of Technology, and gradudated as MSc Tech in 1990. She continued her studies in the Technical Universities of Aachen (RWTH Aachen) and Helsinki and attained her doctoral degree in 1995. After a 2-years post-doctoral appointment at the Joint Research Centre of European Commission in the Netherlands, her professional career continued in the electronics industry. She was a Staff Principal Engineer at Motorola Semiconductor Products Sector in Munich. In 2004 Paulasto-Kröckel joined Infineon Technologies where she was the Director Package Development responsible for semiconductor assembly and interconnect development for automotive products worldwide.
At the end of 2018 Dr. Paulasto-Kröckel became a professor at Helsinki University of Technology, which is now called Aalto University after a merger with two other leading universities in the Helsinki area. Her current research focus is on advanced materials and interconnect technologies for MEMS/NEMS and power electronics, as well as multi-material assemblies behavior under different loads and their characteristic failure mechanisms. Her group has extensive experience in studying interactions and interfacial reactions between dissimilar materials, such as different oxide and nitride materials, metals and semiconductors. The group has developed a combined methodology approach to solve multi-materials compatibility issues in microelectronics and microsystems.
Prof. Paulasto-Kröckel has over 110 international publications in the fields of microelectronics packaging and interfacial compatibility of dissimilar materials. She is IEEE EPS Distinguished Lecturer and a member of the Finnish Academy of Technical Sciences.

Teruaki Motooka received PhD degree in 1981 in Applied Physics from Kyushu University. He was a research scientist in the Central Research Laboratory, Hitachi Ltd. for 1971-1984, a visiting research assistant professor at University of Illinois at Urbana-Champaign, USA for 1984-1988, an associate professor in the Institute of Applied Physics at University of Tsukuba, Japan for 1988-1993, and became a full professor at Kyushu University in 1993. He retired from Kyushu University in 2010.
He has published more than 150 scientific papers on various international journals and these papers have been cited more than 2000 times.

Veikko Lindroos is Professor Emeritus, Physical Metallurgy and Materials Science, Aalto University, Finland. His research covers a broad spectrum of materials science and technology, such as metallic materials, silicon technology and MEMS materials magnetic, electronic and composite materials as well as shape memory effect and materials.

Table of Contents

Part I
1. Properties of silicon; Fracture toughness
2. Czochralski Growth of Silicon Crystals
3. Properties of Silicon Crystals
4. Silicon Wafers: Preparation and Properties; Modern technologies
5. Epi Wafers: Preparation and Properties
6. Thin Films on Silicon
7. Thick-Film SOI Wafers: Preparation and properties

Part II
8. Multiscale Modeling Methods
9. Mechanical Properties of Silicon Microstructures
10. Electrostatic and RF-Properties of MEMS Structures
11. Optical Modeling of MEMS
12. Modeling of Silicon Etching
13. Gas Damping in Vibrating MEMS Structures
14. Recent Progress in Large-scale Electronic State Calculations and Data-driven Sciences

Part III
15. MEMS Lithography
16. Deep Reactive Ion Etching; update
17. Wet Etching of Silicon
18. Porous Silicon Based MEMS
19. Surface Micromachining
20. Vapor Phase Etch Processes for Silicon MEMS
21. Inkjet Printing, Laser-Based Micromachining and Micro 3D Printing Technologies for MEMS
22. Microfluidics and BioMEMS in Silicon

Part IV
23. Silicon Direct Bonding
24. Anodic Bonding
25. Glass Frit Bonding
26. Metallic Alloy Seal Bonding
27. Emerging Wafer Bonding Technologies
28. Bonding of CMOS Processed Wafers
29. Wafer-Bonding Equipment
30. Encapsulation by Film Deposition
31. Dicing of MEMS Devices
32. 3D Integration of MEMS
33. Own chapter for eWLP
34. Through-Substrate Via Technologies for MEMS
35. Outgassing and Gettering

Part V
36. Silicon Wafer and Thin Film Measurements
37. Oxygen and Bulk Microdefects in Silicon
38. Optical Measurement of Static and Dynamic Displacement in MEMS
39. MEMS Residual Stress Characterization: Methodology and Perspective
40. Microscale deformation analysis
41. Strength of Bonded Interfaces
42. Hermeticity Tests
43. MEMS testing and calibration
44. MEMS Reliability

Part VI
45. Case Accelerometer
46. Case Gyroscope
47. Case Pressure Sensor
48. Case Microphone
49. Case Micromirror
50. Case Optical MEMs

What People are Saying About This

From the Publisher

The most important book for manufacturing sensors with MEMS technologies

From the B&N Reads Blog

Customer Reviews