This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain, this book presents a new design and development strategy for cyberphysical microfluidics-based biochips suitable for large-scale bioassay applications.
• Takes a transformative, “cyberphysical” approach towards achieving closed-loop and sensor feedback-driven biochip operation under program control;
• Presents a “physically-aware” system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure biochips;
• Enables readers to simplify the structure of biochips, while facilitating the “general-purpose” use of digital microfluidic biochips for a wider range of applications.
This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain, this book presents a new design and development strategy for cyberphysical microfluidics-based biochips suitable for large-scale bioassay applications.
• Takes a transformative, “cyberphysical” approach towards achieving closed-loop and sensor feedback-driven biochip operation under program control;
• Presents a “physically-aware” system reconfiguration technique that uses sensor data at intermediate checkpoints to dynamically reconfigure biochips;
• Enables readers to simplify the structure of biochips, while facilitating the “general-purpose” use of digital microfluidic biochips for a wider range of applications.

Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips
197
Hardware/Software Co-Design and Optimization for Cyberphysical Integration in Digital Microfluidic Biochips
197Related collections and offers
Product Details
ISBN-13: | 9783319090061 |
---|---|
Publisher: | Springer-Verlag New York, LLC |
Publication date: | 08/06/2014 |
Sold by: | Barnes & Noble |
Format: | eBook |
Pages: | 197 |
File size: | 4 MB |