Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications

This unique text/reference presents a unified approach to the formulation of Gestalt laws for perceptual grouping, and the construction of nested hierarchies by aggregation utilizing these laws. The book also describes the extraction of such constructions from noisy images showing man-made objects and clutter. Each Gestalt operation is introduced in a separate, self-contained chapter, together with application examples and a brief literature review. These are then brought together in an algebraic closure chapter, followed by chapters that connect the method to the data – i.e., the extraction of primitives from images, cooperation with machine-readable knowledge, and cooperation with machine learning.

Topics and features: offers the first unified approach to nested hierarchical perceptual grouping; presents a review of all relevant Gestalt laws in a single source; covers reflection symmetry, frieze symmetry, rotational symmetry, parallelism and rectangular settings, contour prolongation, and lattices; describes the problem from all theoretical viewpoints, including syntactic, probabilistic, and algebraic perspectives; discusses issues important to practical application, such as primitive extraction and any-time search; provides an appendix detailing a  general adjustment model with constraints.

This work offers new insights and proposes novel methods to advance the field of machine vision, which will be of great benefit to students, researchers, and engineers active in this area.

1133115328
Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications

This unique text/reference presents a unified approach to the formulation of Gestalt laws for perceptual grouping, and the construction of nested hierarchies by aggregation utilizing these laws. The book also describes the extraction of such constructions from noisy images showing man-made objects and clutter. Each Gestalt operation is introduced in a separate, self-contained chapter, together with application examples and a brief literature review. These are then brought together in an algebraic closure chapter, followed by chapters that connect the method to the data – i.e., the extraction of primitives from images, cooperation with machine-readable knowledge, and cooperation with machine learning.

Topics and features: offers the first unified approach to nested hierarchical perceptual grouping; presents a review of all relevant Gestalt laws in a single source; covers reflection symmetry, frieze symmetry, rotational symmetry, parallelism and rectangular settings, contour prolongation, and lattices; describes the problem from all theoretical viewpoints, including syntactic, probabilistic, and algebraic perspectives; discusses issues important to practical application, such as primitive extraction and any-time search; provides an appendix detailing a  general adjustment model with constraints.

This work offers new insights and proposes novel methods to advance the field of machine vision, which will be of great benefit to students, researchers, and engineers active in this area.

99.0 In Stock
Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications

Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications

by Eckart Michaelsen, Jochen Meidow
Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications

Hierarchical Perceptual Grouping for Object Recognition: Theoretical Views and Gestalt-Law Applications

by Eckart Michaelsen, Jochen Meidow

eBook1st ed. 2019 (1st ed. 2019)

$99.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This unique text/reference presents a unified approach to the formulation of Gestalt laws for perceptual grouping, and the construction of nested hierarchies by aggregation utilizing these laws. The book also describes the extraction of such constructions from noisy images showing man-made objects and clutter. Each Gestalt operation is introduced in a separate, self-contained chapter, together with application examples and a brief literature review. These are then brought together in an algebraic closure chapter, followed by chapters that connect the method to the data – i.e., the extraction of primitives from images, cooperation with machine-readable knowledge, and cooperation with machine learning.

Topics and features: offers the first unified approach to nested hierarchical perceptual grouping; presents a review of all relevant Gestalt laws in a single source; covers reflection symmetry, frieze symmetry, rotational symmetry, parallelism and rectangular settings, contour prolongation, and lattices; describes the problem from all theoretical viewpoints, including syntactic, probabilistic, and algebraic perspectives; discusses issues important to practical application, such as primitive extraction and any-time search; provides an appendix detailing a  general adjustment model with constraints.

This work offers new insights and proposes novel methods to advance the field of machine vision, which will be of great benefit to students, researchers, and engineers active in this area.


Product Details

ISBN-13: 9783030040406
Publisher: Springer-Verlag New York, LLC
Publication date: 01/01/2019
Series: Advances in Computer Vision and Pattern Recognition
Sold by: Barnes & Noble
Format: eBook
File size: 34 MB
Note: This product may take a few minutes to download.

About the Author

Dr.-Ing. Eckart Michaelsen is a researcher at the Object Recognition Department of Fraunhofer IOSB, Ettlingen, Germany.

Dr.-Ing. Jochen Meidow is a researcher at the Scene Analysis Department of the same institution.

Table of Contents

Introduction.- Reflection Symmetry.- Good Continuation in Rows or Frieze Symmetry.- Rotational Symmetry.- Closure – Hierarchies of Gestalten.- Search.- Illusions.- Prolongation in Good Continuation.- Parallelism and Rectangularity.- Lattice Gestalten.- Primitive Extraction.- Knowledge and Gestalt Interaction.- Learning.- Appendix A: General Adjustment Model with Constraints.

From the B&N Reads Blog

Customer Reviews