Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.

Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.

The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.

1120319152
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.

Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.

The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.

99.0 In Stock
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

by Nasrin Nasrollahi
Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

Improving Infrared-Based Precipitation Retrieval Algorithms Using Multi-Spectral Satellite Imagery

by Nasrin Nasrollahi

eBook2015 (2015)

$99.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space.

Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved.

The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.


Product Details

ISBN-13: 9783319120812
Publisher: Springer-Verlag New York, LLC
Publication date: 11/07/2014
Series: Springer Theses
Sold by: Barnes & Noble
Format: eBook
Pages: 68
File size: 3 MB

Table of Contents

Introduction to the Current States of Satellite Precipitation Products.- False Alarm in Satellite Precipitation Data.- Satellite Observations.- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images.- Integration of CloudSat Precipitation Profile in Reduction of False Rain.- Cloud Classification and its Application in Reducing False Rain.- Summary and Conclusions.
From the B&N Reads Blog

Customer Reviews