Introduction to Hilbert Spaces with Applications
Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. - Updated chapter on wavelets - Improved presentation on results and proof - Revised examples and updated applications - Completely updated list of references
1020994241
Introduction to Hilbert Spaces with Applications
Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. - Updated chapter on wavelets - Improved presentation on results and proof - Revised examples and updated applications - Completely updated list of references
95.99 In Stock
Introduction to Hilbert Spaces with Applications

Introduction to Hilbert Spaces with Applications

Introduction to Hilbert Spaces with Applications

Introduction to Hilbert Spaces with Applications

eBook

$95.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Building on the success of the two previous editions, Introduction to Hilbert Spaces with Applications, Third Edition, offers an overview of the basic ideas and results of Hilbert space theory and functional analysis. It acquaints students with the Lebesgue integral, and includes an enhanced presentation of results and proofs. Students and researchers will benefit from the wealth of revised examples in new, diverse applications as they apply to optimization, variational and control problems, and problems in approximation theory, nonlinear instability, and bifurcation. The text also includes a popular chapter on wavelets that has been completely updated. Students and researchers agree that this is the definitive text on Hilbert Space theory. - Updated chapter on wavelets - Improved presentation on results and proof - Revised examples and updated applications - Completely updated list of references

Product Details

ISBN-13: 9780080455921
Publisher: Elsevier Science & Technology Books
Publication date: 09/29/2005
Sold by: Barnes & Noble
Format: eBook
Pages: 600
File size: 15 MB
Note: This product may take a few minutes to download.

About the Author

Lokenath Debnath is Professor of the Department of Mathematics and Professor of Mechanical and Aerospace Engineering at the University of Central Florida in Orlando. He received his M.Sc. and Ph.D. degrees in pure mathematics from the University of Calcutta, and obtained D.I.C. and Ph.D. degrees in applied mathematics from the Imperial College of Science and Technology, University of London. He was a Senior Research Fellow at the University of Cambridge and has had visiting appointments to several universities in the United States and abroad. His many honors and awards include two Senior Fulbright Fellowships and an NSF Scientist award to visit India for lectures and research. Dr. Debnath is author or co-author of several books and research papers in pure and applied mathematics, and serves on several editorial boards for scientific journals. He is the current and founding Managing Editor of the International Journal of Mathematics and Mathematical Sciences.Piotr Mikusinski received his Ph.D. in mathematics from the Institute of Mathematics of the Polish Academy of Sciences. In 1983, he became visiting lecturer at the University of California at Santa Barbara, where he spent two years. He is currently a member of the faculty in the Department of Mathematics at the University of Central Florida in Orlando. His main research interests are the theory of generalized functions and real analysis. He has published many research articles and is co-author with his father, Jan Mikusinski, of An Introduction to Analysis: From Number to Integral.

Table of Contents

CHAPTER 1 Normed Vector SpacesCHAPTER 2 The Lebesgue IntegralCHAPTER 3 Hilbert Spaces and Orthonormal SystemsCHAPTER 4 Linear Operators on Hilbert SpacesCHAPTER 5 Applications to Integral and Differential EquationsCHAPTER 6 Generalized Functions and Partial Differential EquationsCHAPTER 7 Mathematical Foundations of Quantum MechanicsCHAPTER 8 Wavelets and Wavelet TransformsCHAPTER 9 Optimization Problems and Other Miscellaneous Applications

What People are Saying About This

From the Publisher

Updated edition presents readers with the basic ideas and results of Hilbert space theory and functional analysis

From the B&N Reads Blog

Customer Reviews