Machine Learning and Knowledge Discovery for Engineering Systems Health Management
This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.
1100108841
Machine Learning and Knowledge Discovery for Engineering Systems Health Management
This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.
69.99 In Stock
Machine Learning and Knowledge Discovery for Engineering Systems Health Management

Machine Learning and Knowledge Discovery for Engineering Systems Health Management

Machine Learning and Knowledge Discovery for Engineering Systems Health Management

Machine Learning and Knowledge Discovery for Engineering Systems Health Management

eBook

$69.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This volume presents state-of-the-art tools and techniques for automatically detecting, diagnosing, and predicting the effects of adverse events in an engineered system. It emphasizes the importance of these techniques in managing the intricate interactions within and between engineering systems to maintain a high degree of reliability. Reflecting the interdisciplinary nature of the field, the book explains how the fundamental algorithms and methods of both physics-based and data-driven approaches effectively address systems health management in application areas such as data centers, aircraft, and software systems.

Product Details

ISBN-13: 9781000755718
Publisher: CRC Press
Publication date: 04/19/2016
Series: Chapman & Hall/CRC Data Mining and Knowledge Discovery Series
Sold by: Barnes & Noble
Format: eBook
Pages: 502
File size: 5 MB

About the Author

Ashok N. Srivastava is the Principal Scientist for Data Mining and Systems Health Management at NASA. Dr. Srivastava has received many awards, including the IEEE Computer Society Technical Achievement Award, the NASA Exceptional Achievement Medal, NASA Group Achievement Awards, the IBM Golden Circle Award, and a U.S. Department of Education Merit Fellowship. His current research focuses on the development of data mining algorithms for anomaly detection in massive data streams, kernel methods in machine learning, and text mining algorithms.

Jiawei Han is an Abel Bliss Professor of Computer Science at the University of Illinois. He is also the Director of the Information Network Academic Research Center, which is supported by the U.S. Army Research Lab. A fellow of ACM and IEEE, Dr. Han has received numerous honors, including IEEE W. Wallace McDowell Award, IEEE Computer Society Technical Achievement Award, ACM SIGKDD Innovation Award, IBM Faculty awards, and HP Innovation awards. His research interests include data mining, information network analysis, and database systems.

Table of Contents

Data-Driven Methods for Systems Health Management. Physics-Based Methods for Systems Health Management. Applications. Index.
From the B&N Reads Blog

Customer Reviews