Machine Learning Approaches To Bioinformatics available in Hardcover

Machine Learning Approaches To Bioinformatics
- ISBN-10:
- 981428730X
- ISBN-13:
- 9789814287302
- Pub. Date:
- 05/07/2010
- Publisher:
- World Scientific Publishing Company, Incorporated
- ISBN-10:
- 981428730X
- ISBN-13:
- 9789814287302
- Pub. Date:
- 05/07/2010
- Publisher:
- World Scientific Publishing Company, Incorporated

Machine Learning Approaches To Bioinformatics
Hardcover
Buy New
$121.00-
SHIP THIS ITEMIn stock. Ships in 1-2 days.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Overview
Product Details
ISBN-13: | 9789814287302 |
---|---|
Publisher: | World Scientific Publishing Company, Incorporated |
Publication date: | 05/07/2010 |
Series: | Science, Engineering, And Biology Informatics , #4 |
Pages: | 336 |
Product dimensions: | 6.10(w) x 9.00(h) x 0.90(d) |
Table of Contents
Preface v
1 Introduction 1
1.1 Brief history of bioinformatics 3
1.2 Database application in bioinformatics 6
1.3 Web tools and services for sequence homology Alignment 8
1.3.1 Web tools and services for protein functional site identification 9
1.3.2 Web tools and services for other biological data 10
1.4 Pattern analysis 10
1.5 The contribution of information technology 11
1.6 Chapters 12
2 Introduction to Unsupervised Learning 15
3 Probability Density Estimation Approaches 24
3.1 Histogram approach 24
3.2 Parametric approach 25
3.3 Non-parametric approach 28
3.3.1 K-nearest neighbour approach 28
3.3.2 Kernel approach 29
Summary 36
4 Dimension Reduction 38
4.1 General 38
4.2 Principal component analysis 39
4.3 An application of PCA 42
4.4 Multi-dimensional scaling 46
4.5 Application of the Sammon algorithm to gene data 48
Summary 50
5 Cluster Analysis 52
5.1 Hierarchical clustering 52
5.2 K-means 55
5.3 Fuzzy C-means 58
5.4 Gaussian mixture models 60
5.5 Application of clustering algorithms to the Burkholderia pseudomallei gene expression data 64
Summary 67
6 Self-organising Map 69
6.1 Vector quantization 69
6.2 SOM structure 73
6.3 SOM learning algorithm 75
6.4 Using SOM for classification 79
6.5 Bioinformatics applications of VQ and SOM 81
6.5.1 Sequence analysis 81
6.5.2 Gene expression data analysis 83
6.5.3 Metabolite data analysis 86
6.6 A case study of gene expression data analysis 86
6.7 A case study of sequence data analysis 88
Summary 90
7 Introduction to Supervised Learning 92
7.1 General concepts 92
7.2 General Definition 94
7.3 Model evaluation 96
7.4 Data organisation 101
7.5 Bayes rule for classification 103
Summary 103
8 Linear/Quadratic Discriminant Analysis and K-nearest Neighbour 104
8.1 Linear discriminant analysis 104
8.2 Generalised discriminant analysis 109
8.3 K-nearest neighbour 111
8.4 KNN for gene data analysis 118
Summary 118
9 Classification and Regression Trees, Random Forest Algorithm 120
9.1 Introduction 120
9.2 Basic principle for constructing a classification tree 121
9.3 Classification and regression tree 125
9.4 CART for compound pathway involvement prediction 126
9.5 The random forest algorithm 128
9.6 RF for analyzing Burkholderia pseudomallei gene expression profiles 129
Summary 132
10 Multi-layer Perceptron 133
10.1 Introduction 133
10.2 Learning theory 137
10.2.1 Parameterization of a neural network 137
10.2.2 Learning rules 137
10.3 Learning algorithms 145
10.3.1 Regression 145
10.3.2 Classification 146
10.3.3 Procedure 147
10.4 Applications to bioinformatics 148
10.4.1 Bio-chemical data analysis 148
10.4.2 Gene expression data analysis 149
10.4.3 Protein structure data analysis 149
10.4.4 Bio-marker identification 150
10.5 A case study on Burkholderia pseudomallei gene expression data 150
Summary 153
11 Basis Function Approach and Vector Machines 154
11.1 Introduction 154
11.2 Radial-basis function neural network (RBFNN) 156
11.3 Bio-basis function neural network 162
11.4 Support vector machine 168
11.5 Relevance vector machine 173
Summary 176
12 Hidden Markov Model 177
12.1 Markov model 177
12.2 Hidden Markov model 179
12.2.1 General definition 179
12.2.2 Handling HMM 183
12.2.3 Evaluation 184
12.2.4 Decoding 188
12.2.5 Learning 189
12.3 HMM for sequence classification 191
Summary 194
13 Feature Selection 195
13.1 Built-in strategy 195
13.1.1 Lasso regression 196
13.1.2 Ridge regression 199
13.1.3 Partial least square regression (PLS) algorithm 200
13.2 Exhaustive strategy 204
13.3 Heuristic strategy - orthogonal least square approach 204
13.4 Criteria for feature selection 208
13.4.1 Correlation measure 209
13.4.2 Fisher ratio measure 210
13.4.3 Mutual information approach 210
Summary 212
14 Feature Extraction (Biological Data Coding) 213
14.1 Molecular sequences 214
14.2 Chemical compounds 215
14.3 General definition 216
14.4 Sequence analysis 216
14.4.1 Peptide feature extraction 216
14.4.2 Whole sequence feature extraction 222
Summary 224
15 Sequence/Structural Bioinformatics Foundation - Peptide Classification 225
15.1 Nitration site prediction 225
15.2 Plant promoter region prediction 230
Summary 237
16 Gene Network - Causal Network and Bayesian Networks 238
16.1 Gene regulatory network 238
16.2 Causal networks, networks, graphs 241
16.3 A brief review of the probability 242
16.4 Discrete Bayesian network 245
16.5 Inference with discrete Bayesian network 246
16.6 Learning discrete Bayesian network 247
16.7 Bayesian networks for gene regulatory networks 247
16.8 Bayesian networks for discovering Peptide patterns 248
16.9 Bayesian networks for analysing Burkholderia pseudomallei gene data 249
Summary 252
17 S-Systems 253
17.1 Michealis-Menten change law 253
17.2 S-System 256
17.3 Simplification of an S-system 259
17.4 Approaches for structure identification and parameter estimation 260
17.4.1 Neural network approach 260
17.4.2 Simulated annealing approach 261
17.4.3 Evolutionary computation approach 262
17.5 Steady-state analysis of an S-system 262
17.6 Sensitivity of an S-system 267
Summary 268
18 Future Directions 269
18.1 Multi-source data 270
18.2 Gene regulatory network construction 272
18.3 Building models using incomplete data 274
18.4 Biomarker detection from gene expression data 275
Summary 278
References 279
Index 319