The authors show just how much information you can glean with straightforward queries, aggregations, and visualisations, and they teach indispensable error analysis methods to avoid costly mistakes. They turn to workhorse machine learning techniques such as linear regression, classification, clustering, and Bayesian inference, helping you choose the right algorithm for each production problem. Their concluding section on hardware, infrastructure, and distributed systems offers unique and invaluable guidance on optimisation in production environments.
Andrew and Adam always focus on what matters in production: solving the problems that offer the highest return on investment, using the simplest, lowest-risk approaches that work.
- Leverage agile principles to maximise development efficiency in production projects
- Learn from practical Python code examples and visualisations that bring essential algorithmic concepts to life
- Start with simple heuristics and improve them as your data pipeline matures
- Avoid bad conclusions by implementing foundational error analysis techniques
- Communicate your results with basic data visualisation techniques
- Master basic machine learning techniques, starting with linear regression and random forests
- Perform classification and clustering on both vector and graph data
- Learn the basics of graphical models and Bayesian inference
- Understand correlation and causation in machine learning models
- Explore overfitting, model capacity, and other advanced machine learning techniques
- Make informed architectural decisions about storage, data transfer, computation, and communication
The full text downloaded to your computer
With eBooks you can:
- search for key concepts, words and phrases
- make highlights and notes as you study
- share your notes with friends
eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.
Upon purchase, you will receive via email the code and instructions on how to access this product.
Time limit
The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.
The authors show just how much information you can glean with straightforward queries, aggregations, and visualisations, and they teach indispensable error analysis methods to avoid costly mistakes. They turn to workhorse machine learning techniques such as linear regression, classification, clustering, and Bayesian inference, helping you choose the right algorithm for each production problem. Their concluding section on hardware, infrastructure, and distributed systems offers unique and invaluable guidance on optimisation in production environments.
Andrew and Adam always focus on what matters in production: solving the problems that offer the highest return on investment, using the simplest, lowest-risk approaches that work.
- Leverage agile principles to maximise development efficiency in production projects
- Learn from practical Python code examples and visualisations that bring essential algorithmic concepts to life
- Start with simple heuristics and improve them as your data pipeline matures
- Avoid bad conclusions by implementing foundational error analysis techniques
- Communicate your results with basic data visualisation techniques
- Master basic machine learning techniques, starting with linear regression and random forests
- Perform classification and clustering on both vector and graph data
- Learn the basics of graphical models and Bayesian inference
- Understand correlation and causation in machine learning models
- Explore overfitting, model capacity, and other advanced machine learning techniques
- Make informed architectural decisions about storage, data transfer, computation, and communication
The full text downloaded to your computer
With eBooks you can:
- search for key concepts, words and phrases
- make highlights and notes as you study
- share your notes with friends
eBooks are downloaded to your computer and accessible either offline through the Bookshelf (available as a free download), available online and also via the iPad and Android apps.
Upon purchase, you will receive via email the code and instructions on how to access this product.
Time limit
The eBooks products do not have an expiry date. You will continue to access your digital ebook products whilst you have your Bookshelf installed.

Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications
288
Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications
288Related collections and offers
Product Details
ISBN-13: | 9780134116563 |
---|---|
Publisher: | Pearson Education |
Publication date: | 02/27/2019 |
Series: | Addison-Wesley Data & Analytics Series |
Sold by: | Barnes & Noble |
Format: | eBook |
Pages: | 288 |
File size: | 19 MB |
Note: | This product may take a few minutes to download. |
Age Range: | 18 Years |