Machine Learning: A Bayesian and Optimization Perspective
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models.The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts.

The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.

1133137277
Machine Learning: A Bayesian and Optimization Perspective
This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models.The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts.

The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.

105.0 In Stock
Machine Learning: A Bayesian and Optimization Perspective

Machine Learning: A Bayesian and Optimization Perspective

by Sergios Theodoridis
Machine Learning: A Bayesian and Optimization Perspective

Machine Learning: A Bayesian and Optimization Perspective

by Sergios Theodoridis

eBook

$105.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This tutorial text gives a unifying perspective on machine learning by covering both probabilistic and deterministic approaches -which are based on optimization techniques – together with the Bayesian inference approach, whose essence lies in the use of a hierarchy of probabilistic models.The book presents the major machine learning methods as they have been developed in different disciplines, such as statistics, statistical and adaptive signal processing and computer science. Focusing on the physical reasoning behind the mathematics, all the various methods and techniques are explained in depth, supported by examples and problems, giving an invaluable resource to the student and researcher for understanding and applying machine learning concepts.

The book builds carefully from the basic classical methods to the most recent trends, with chapters written to be as self-contained as possible, making the text suitable for different courses: pattern recognition, statistical/adaptive signal processing, statistical/Bayesian learning, as well as short courses on sparse modeling, deep learning, and probabilistic graphical models.


Product Details

ISBN-13: 9780128188040
Publisher: Elsevier Science & Technology Books
Publication date: 02/19/2020
Sold by: Barnes & Noble
Format: eBook
Pages: 1160
File size: 75 MB
Note: This product may take a few minutes to download.

About the Author

Sergios Theodoridis is professor emeritus of machine learning and data processing with the National and Kapodistrian University of Athens, Athens, Greece. He has also served as distinguished professor with the Aalborg University Denmark and as professor with the Chinese University of Hong Kong, Shenzhen, China. In 2023, he received an honorary doctorate degree (D.Sc) from the University of Edinburgh, U.K. He has also received a number of prestigious awards, including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2017 European Association for Signal Processing (EURASIP) Athanasios Papoulis Award, the 2014 IEEE Signal Processing Society Carl Friedrich Gauss Education Award, and the 2014 EURASIP Meritorious Service Award. He has served as president of EURASIP and vice president for the IEEE Signal Processing Society. He is a Fellow of EURASIP and a Life Fellow of IEEE. He is the coauthor of the book Pattern Recognition, 4th edition, Academic Press, 2009 and of the book Introduction to Pattern Recognition: A MATLAB Approach, Academic Press, 2010.

Table of Contents

1. Introduction2. Probability and stochastic Processes3. Learning in parametric Modeling: Basic Concepts and Directions4. Mean-Square Error Linear Estimation5. Stochastic Gradient Descent: the LMS Algorithm and its Family6. The Least-Squares Family7. Classification: A Tour of the Classics8. Parameter Learning: A Convex Analytic Path9. Sparsity-Aware Learning: Concepts and Theoretical Foundations10. Sparsity-Aware Learning: Algorithms and Applications11. Learning in Reproducing Kernel Hilbert Spaces12. Bayesian Learning: Inference and the EM Algorithm13. Bayesian Learning: Approximate Inference and nonparametric Models14. Montel Carlo Methods15. Probabilistic Graphical Models: Part 116. Probabilistic Graphical Models: Part 217. Particle Filtering18. Neural Networks and Deep Learning19. Dimensionality Reduction and Latent Variables Modeling

What People are Saying About This

From the Publisher

Gain an in-depth understanding of all the main machine learning methods, including sparse modeling, online and convex optimization, Bayesian inference, graphical models, deep networks, learning in RKH spaces, dimensionality reduction and dictionary learning

From the B&N Reads Blog

Customer Reviews