ISBN-10:
1849960224
ISBN-13:
9781849960229
Pub. Date:
03/01/2010
Publisher:
Springer London
Mathematics for Computer Graphics / Edition 3

Mathematics for Computer Graphics / Edition 3

by John A. Vince

Paperback

Current price is , Original price is $42.95. You
Select a Purchase Option (3rd ed. 2010)
  • purchase options

Product Details

ISBN-13: 9781849960229
Publisher: Springer London
Publication date: 03/01/2010
Series: Undergraduate Topics in Computer Science Series
Edition description: 3rd ed. 2010
Pages: 293
Product dimensions: 6.10(w) x 9.10(h) x 0.90(d)

About the Author

John Vince has been writing books for 25 years. Previous publications with Springer include:

Geometric Algebra: An Algebraic System for Computer Games and Animation Springer, 2009, ISBN 978-1-84882-378-5

Vector Analysis for Computer Graphics

Springer, 2007, ISBN 978-1-84628-803-6

Mathematics for Computer Graphics

Springer, 2006, ISBN 1-84628-034-6

Introduction to Virtual Reality

Springer, 2004, ISBN 1-85233-739-7

More information can be found at http://www.johnvince.co.uk/

Table of Contents

Mathematics.- Introduction.- Is Mathematics Difficult?.- Who Should Read this book?.- Aims and Objectives of this Book.- Assumptions Made in this Book.- How to use the Book.- Numbers.- Introduction.- Natural Numbers.- Prime Numbers.- Integers.- Rational Numbers.- Irrational Numbers.- Real Numbers.- The Number Line.- Complex Numbers.- Summary.- Algebra.- Introduction.- Notation.- Algebraic Laws.- Associative Law.- Commutative Law.- Distributive Law.- Solving the Roots of a Quadratic Equation.- Indices.- Laws of Indices.- Examples.- Logarithms.- Further Notation.- Summary.- Trigonometry.- Introduction.- The Trigonometric Ratios.- Example.- Inverse Trigonometric Ratios.- Trigonometric Relationships.- The Sine Rule.- The Cosine Rule.- Compound Angles.- Perimeter Relationships.- Summary.- Cartesian Coordinates.- Introduction.- The Cartesian xy-plane.- Function Graphs.- Geometric Shapes.- Polygonal Shapes.- Areas of Shapes.- Theorem of Pythagoras in 2D.- 3D Coordinates.- Theorem of Pythagoras in 3D.- 3D polygons.- Euler’s Rule.- Summary.- Vectors.- Introduction.- 2D Vectors.- Vector Notation.- Graphical Representation of Vectors.- Magnitude of a Vector.- 3D Vectors.- Vector Manipulation.- Multiplying a Vector by a Scalar.- Vector Addition and Subtraction.- Position Vectors.- Unit Vectors.- Cartesian Vectors.- Vector Multiplication.- Scalar Product.- Example of the Scalar Product.- The Dot Product in Lightening Calculations.- The Scalar Product in Back-Face Detection.- The Vector Product.- The Right-Hand Rule.- Deriving a Unit Normal Vector for a Triangle.- Areas.- Calculating 2D Areas.- Summary.- Transforms.- Introduction.- 2D Transforms.- Translation.- Scaling.- Reflection.- Matrices.- Systems of Notation.- The Determinant of a Matrix.- Homogeneous Coordinates.- 2D Translation.- 2D Scaling.- 2D Reflections.- 2D Shearing.- 2D Rotation.- 2D Scaling.- 2D Reflection.- 2D Rotation about an Arbitrary Point.- 3D Transforms.- 3D Translation.- 3D Scaling.- 3D Rotation.- Gimbal Lock.- Rotating about an Axis.- 3D Reflections.- Change of Axes.- 2D Change of Axes.- Direct Cosines.- 3D Change of Axes.- Positioning on the Virtual Camera.- Direction Cosines.- Euler Angles.- Rotating a point about an Arbitrary Axis.- Matrices.- Quaternions.- Adding and Subtracting Quaternions.- Multiplying Quaternions.- Pure Quaternion.- The Inverse Quaternion.- Unit Quaternion.- Rotating Points about an Axis.- Roll, Pitch and Yaw Quaternions.- Quaternions in Matrix Form.- Frames of Reference.- Transforming Vectors.- Determinants.- Perspective Projection.- Summary.- Interpolation.- Introduction.- Linear Interpolation.- Non-Linear Interpolation.- Trigonometric Interpolation.- Cubic Interpolation.- Interpolating Vectors.- Interpolating Quaternions.- Summary.- Curves and Patches.- Introduction.- The Circle.- The Ellipse.- Bezier Curves.- Bernstein Polynomials.- Quadratic Bezier Curves.- Cubic Bernstein Polynominals.- A Recursive Bezier Formula.- Bezier Curves Using Matrices.- Linear Interpolation.- B-Splines.- Continuity.- Non-Uniform B-Splines.- Non-Uniform Rational B-Splines.- Surface Patches.- Planar Surface Patch.- Quadratic Bezier Surface Patch.- Cubic Bezier Surface Patch.- Summary.- Analytical Geometry.- Introduction.- Review of Geometry.- Angles.- Intercept Theorems.- Golden Section.- Triangles.- Centre of Gravity of a Triangle.- Isosceles Triangle.- Equilateral Triangle.- Right Triangle.- Theorem of Thales.- Theorem of Pythagoras.- Quadrilaterals.- Trapezoid.- Parallelogram.- Rhombus.- Regular Polygon (n-gon).- Circle.- 2D Analytical Geometry.- Equation of a Straight Line.- The Hessian Normal Form.- Space Partitioning.- The Hessian Normal Form From Two Points.- Intersection Points.- Intersection Point of Two Straight Lines.- Intersection Point of Two Line Segments.- Point Inside a Triangle.- Area of a Triangle.- Hessian Normal Form.- Intersection of a Circle with a Straight Line.- 3D Geometry.- Equation of a Straight Line.- Point of Intersection of Two Straight Lines.- Equation of a Plane.- Cartesian Form of the Plane Equation.- General Form of the Plane Equation.- Parametric Form of the Plane Equation.- Converting from the Parametric to the General Form.- Plane Equation from Three Points.- Intersecting Planes.- Intersection of Three Planes.- Angle Between Two Planes.- Angle Between a Line and a Plane.- Intersection of a Line with a Plane.- Summary.- Barycentric Coordinates.- Introduction.- Ceva’s Theorem.- Ratios and Proportion.- Mass Points.- Linear Interpolation.- Convex Hull Property.- Areas.- Volumes.- Bezier Curves and Patches.- Summary.- Geometric Algebra.- Introduction.- Symmetric and Antisymmetric Functions.- Trigonometric Foundations.- Vectorial Foundations.- Inner and Outer Products.- The Geometric Product in 2D.- The Geometric Product in 3D.- The Outer Product of 3D Vectors.- Axioms.- Notation.- Grades, Pseudoscalars and Multivectors.- Redefining the Inner and Outer Products.- The Inverse of a Vector.- The Imaginary Properties of the Outer Product.- Duality.- The Relationship between the Vector Product and the Outer Product.- The Relationship Between the Quaternions and Bivectors.- Reflections and Rotations.- 2D Reflections.- 3D Reflections.- 2D Rotations.- Rotors.- Applied Geometric Algebra.- Sine Rule.- Cosine Rule.- A Point Perpendicular to a Point on a Line.- Reflecting a Vector about a Vector.- Orientation of a Point with a Plane.- Summary.- Worked Examples.- Introduction.- Area of a Regular Polygon.- Dihedral Angle if a Dodecahedron.- Conclusion

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews