MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you’ll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.
With the groundwork in place, you’ll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.
As you advance through the chapters, you’ll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.
Armed with this comprehensive knowledge, you’ll be able to implement MLOps workflows on the OpenShift platform proficiently.

1144745973
MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you’ll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.
With the groundwork in place, you’ll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.
As you advance through the chapters, you’ll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.
Armed with this comprehensive knowledge, you’ll be able to implement MLOps workflows on the OpenShift platform proficiently.

35.99 In Stock
MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

MLOps with Red Hat OpenShift: A cloud-native approach to machine learning operations

eBook

$35.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you’ll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.
With the groundwork in place, you’ll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.
As you advance through the chapters, you’ll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.
Armed with this comprehensive knowledge, you’ll be able to implement MLOps workflows on the OpenShift platform proficiently.


Product Details

ISBN-13: 9781805125853
Publisher: Packt Publishing
Publication date: 01/31/2024
Sold by: Barnes & Noble
Format: eBook
Pages: 238
File size: 14 MB
Note: This product may take a few minutes to download.

About the Author

Ross Brigoli is a consulting architect at Red Hat, where he focuses on designing and delivering solutions around microservices architecture, DevOps, and MLOps with Red Hat OpenShift for various industries. He has two decades of experience in software development and architecture.
Faisal Masood is a cloud transformation architect at AWS. Faisal's focus is to assist customers in refining and executing strategic business goals. Faisal main interests are evolutionary architectures, software development, ML lifecycle, CD and IaC. Faisal has over two decades of experience in software architecture and development.

Table of Contents

Table of Contents
  1. Introduction to MLOps and OpenShift
  2. Provisioning an MLOps platform in the Cloud
  3. Building Machine Learning Models
  4. Embedding ML Models into the Applications
  5. Deploying ML Models as a Service
  6. Operating ML workloads
  7. Building a face detector using the Red Hat ML Platform
From the B&N Reads Blog

Customer Reviews