Modelling Methodology for Physiology and Medicine
Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. - Builds upon and enhances the reader's existing knowledge of modeling methodology and practice - Editors are internationally renowned leaders in their respective fields - Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems
1133479058
Modelling Methodology for Physiology and Medicine
Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. - Builds upon and enhances the reader's existing knowledge of modeling methodology and practice - Editors are internationally renowned leaders in their respective fields - Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems
120.0 In Stock
Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine

Modelling Methodology for Physiology and Medicine

eBook

$120.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Modelling Methodology for Physiology and Medicine, Second Edition, offers a unique approach and an unprecedented range of coverage of the state-of-the-art, advanced modeling methodology that is widely applicable to physiology and medicine. The second edition, which is completely updated and expanded, opens with a clear and integrated treatment of advanced methodology for developing mathematical models of physiology and medical systems. Readers are then shown how to apply this methodology beneficially to real-world problems in physiology and medicine, such as circulation and respiration. The focus of Modelling Methodology for Physiology and Medicine, Second Edition, is the methodology that underpins good modeling practice. It builds upon the idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology in which important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine. It builds on work that the editors have carried out over the past 30 years, working in cooperation with leading practitioners in the field. - Builds upon and enhances the reader's existing knowledge of modeling methodology and practice - Editors are internationally renowned leaders in their respective fields - Provides an understanding of modeling methodologies that can address real problems in physiology and medicine and achieve results that are beneficial either in advancing research or in providing solutions to clinical problems

Product Details

ISBN-13: 9780124095250
Publisher: Elsevier Science
Publication date: 12/05/2013
Sold by: Barnes & Noble
Format: eBook
Pages: 588
File size: 8 MB

About the Author

Ewart Carson is Emeritus Professor of Systems Science in the School of Mathematics, Computer Science and Engineering at City, University of London. Educated at the University of St Andrews in Scotland and City University London, he holds a PhD in Systems Science and a DSc in Measurement and Information in Medicine. He holds Honorary Membership of the Royal College of Physicians (London) , a Life Fellowship of the IEEE, Fellowships of the International Academy of Medical and Biological Engineering and the American Institute of Medical and Biological Engineers, and is a Foundation Fellow of the European Alliance for Medical and Biological Engineering and Science Publications include 13 authored and edited books and more than 300 journal papers and chapters. Areas of research interest and expertise include: modelling in physiology and medicine; modelling methodology for health resource management; clinical decision support systems; evaluation methodologies with particular application in telemedicine; and integrated policy modelling for ICT enhanced public healthcare. As a systems scientist, all this research is undertaken within a clear systemic framework.Claudio Cobelli received a Doctoral degree (Laurea) in Electrical Engineering in 1970 from the University of Padova, Padova, Italy. From 1970 to 1980, he was a Research Fellow of the Institute of System Science and Biomedical Engineering, National Research Council, Padova, Italy. From 1973 to 1975 and 1975 to 1981, he was Associate Professor of Biological Systems at the University of Florence and Associate Professor of Biomedical Engineering at the University of Padova, respectively. In 1981, he becomes Full Professor of Biomedical Engineering at University of Padova. From 2000 to 2009, he has been Chairman of the Graduate Program in Biomedical Engineering. From 2000 to 2011, he has been Chairman of the Ph.D. Program in Bioengineering at the University of Padova. His main research activity is in the field of modeling and identification of physiological systems, especially metabolic systems. His research is currently supported by NIH, JDRF and European Comunity. He has published 450 papers in internationally refereed journals, co-author of 8 books and holds 11 patents. He is currently Associate Editor of IEEE Transaction on Biomedical Engineering and Journal of Diabetes Science & Technology. He is on the Editorial Board of Diabetes and Diabetes Technology &Therapeutics. Dr.Cobelli has been Chairman (1999-2004) of the Italian Biomedical Engineering Group, Chairman (1990-1993 & 1993-1996) of IFAC TC on Modeling and Control of Biomedical Systems and member of the IEEE EMBS AdCom Member (2008-2009). He has been a member of the Gruppo di Esperti della Valutazione (GEV), Area 09, of the Agenzia Nazionale per la Valutazione del Sistema Universitario e della Ricerca (ANVUR) for the period 2011-2013. He is President of the Organo di Indirizzo of the Azienda Ospedaliera Universita' di Trieste In 2010 he received the Diabetes Technology Artificial Pancreas Research Award. He is Fellow of IEEE, BMES and EAMBES.

Read an Excerpt

1. An Introduction to Modelling Methodology

1.1. Introduction

The aim of this book is to describe more recent developments in modelling theory and practice in relation to physiology and medicine. The chapters that follow offer detailed accounts of several facets of modelling methodology (Chapters 2-6) as well as demonstration of how such methodological development can be applied in areas of physiology and medicine. This application material, contained in Chapters 7-13, is not intended to be comprehensive. Rather, topics have been chosen that span study in the circulatory and respiratory systems (Chapters 8-10) and key areas of metabolism and endocrinology (Chapters 7 and I1-13). The authors of the respective chapters have very considerable expertise in these areas of physiology and medicine.

Before moving into the more advanced areas of methodology, it is appropriate to review the fundamentals of the modelling process, which put simply can be viewed as a mapping or transforming of a physiological system into a model as shown in Figure 1.1. The process has now reached substantial maturity, and the basic ingredients are well established. This overall modelling framework is described in detail in the accompanying volume (Cobelli and Carson, 2001). In this chapter, we provide a distillation of that framework and revisit the fundamentals upon which the later, more detailed chapters are built.

1.2. The Need for Models

1.2.1. Physiological Complexity

Complexity is what characterises much of physiology, and we must have a method to address this. Complexity manifests itself through elements that comprise any physiological system through the nature of their connectivity, in terms of hierarchy, and through the existence of nonlinear, stochastic, and time-varying effects. Complexity is exhibited at each level of the hierarchy and across levels within the physiological system.

What do we mean by some of these concepts? First, the physiological hierarchy will include the levels of molecule, cell, organ, and organism. Complex processes of regulation and control are evident at each level. Feedback is another key feature that occurs in many forms. It is inherent in chemical reactions within the organism. There are explicit hormonal control mechanisms superimposed upon metabolic processes. The physiological organ systems exhibit explicit control mechanisms. In many instances, there is negative feedback, although examples of positive feedback also exist. Feedback offers examples of control action being taken not only in relation to changes in the value of a physiological variable per se, but also in response either to its rate of change or to the integral of its value over a period of time. Some of these concepts of feedback and control are examined in more detail in Chapter 2.

As a result of this physiological complexity, it is not often possible to measure directly (in vivo) the quantities of interest. Only indirect measures may be feasible, implying the need for some model to be able to infer the value of the quantity of real interest. Measurement constraints usually mean that it is only possible to obtain readings of blood values of a metabolite when the real interest lies in its value in body tissue. Equally, it is not generally possible to measure the secretions of the endocrine glands.

Overall, this complexity-coupled with the limitations that are imposed upon the measurement processes in physiology and medicine-means that models must be adopted to aid our understanding.

1.2.2. Models and Their Purposes

What do we mean by the term model? In essence, it is a representation of reality involving some degree of approximation. Models can take many forms. They can be conceptual, mental, verbal, physical, statistical, mathematical, logical, or graphical in form. For the most part, this volume focuses on mathematical modelling.

Given that a model provides an approximate representation of reality, what is the purpose of modelling activity? As is shown in Figure 1.2, the purpose is a key driver of good modelling methodology. In classic scientific terms, modelling can be used to describe, interpret, predict, or explain. A mathematical expression, for example, a single exponential decay, can provide a compact description of data that approximate to a first-order process. A mathematical model can be used to interpret data collected as part of a lung function test. A model of renal function, which includes representations of the dynamics of urea and creatinine, can be used to predict the time at which a patient with end-stage renal disease should next undergo haemodialysis. A model of glucose and insulin can be used to gain additional insight into, and explanation of, the complex endocrine dynamics in the diabetic patient.

Rather, more specific purposes for modelling can be identified in the physiological context. These include aiding understanding, testing hypotheses, measuring inferences, teaching, simulating, and examining experimental design. For example, competing models, constituting alternative hypotheses, can be examined to determine which are compatible with physiological or clinical observation. Equally, a model of the relevant metabolic processes, when taken together with measurements of a metabolite made in the bloodstream, can be used to infer the value of that metabolite in the liver. Models also are increasingly used as a medium in teaching and learning processes, where, by means of simulation, the student can be exposed to a richer range of physiological and pathophysiological situations than would be possible in the conventional physiological laboratory setting. Models also can play a powerful role in experimental design. For instance, if the number of blood samples that can be withdrawn from a patient is limited in a given period of time, models can be used to determine the times at which blood samples should be withdrawn to obtain the maximum information from the experiment, for example, in relation to pharmacokinetic or pharmacodynamic effects.

Considering what is meant by a model and its purposes, we now focus on the nature of the process itself. As already indicated, this is the process of mapping from the physiological or pathophysiological system of interest to the completed model, as shown in Figure 1.1. The essential ingredients are model formulation, including determination of the degree to which the model is an approximation of reality; model identification, including parameter estimation; and model validation. These are discussed in the following sections.

1.3. Approaches to Modelling

In developing a mathematical model, two fundamental approaches are possible. The first is based on experimental data and is essentially a datadriven approach. The other is based on a fundamental understanding of the physical and chemical processes that give rise to the resultant experimental data. This can be referred to as modelling the system.

1.3.1. Modelling the Data

Models that are based on experimental data are generally known as datadriven or black box models. Fundamentally, this means seeking quantitative descriptions of physiological systems based on input-output (1/O) descriptions derived from experimental data collected on the system. Simply put, these are mathematical descriptions of data, with only implicit correspondence to the underlying physiology.

Why should we use such data models? First, they are particularly appropriate where there is a lack of knowledge of the underlying physiology, whether a priori knowledge or knowledge acquired directly through measurement. Equally, they are appropriate when an overall 1/O representation of the system's dynamics is needed, without knowing specifically how the physiological mechanisms gave rise to such 1/O behaviour.

The methodological framework for modelling data is depicted in Figure 1.3. Several specific methods are available for formulating such data models, including time series methods, transfer function analysis, convolutiondeconvolution techniques that are restricted to linear systems (discussed in Chapter 3), and impulse response methods...

Table of Contents

1. An introduction to modelling methodology 2. Control in Physiology and Medicine 3. Deconvolution4. A priori identifiability of physiological parametric models 5. Parameter estimation 6. New Trends in nonparametric linear system identification 7. Population Modelling 8. Systems Biology 9. Genomic Regulatory Networks 10. Tracer experiment design for metabolic fluxes estimation in steady and nonsteady state 11. Physiological modelling of positron emission tomography images 12. Downstream from Heart Left Ventricle: Aortic Impedance Interpretation by Lumped- and Tube-load Models13. Mathematical modelling of pulmonary gas exchange 14. Acid- base modelling 15. Insulin modelling 16. Glucose modelling 17. Blood-tissue exchange modelling 18. Stochastic modelling of physiological systems 19. Tumour growth modelling for drug development 20. Modelling cardiac biomechanics 21. Finite element modelling in musculoskeletal biomechanics 22. Probabilistic modelling with Bayesian networks 23. Modelling for synthetic biology 24. Mathematical models for computational neuroscience

What People are Saying About This

From the Publisher

State of the art in mathematical modeling methodology for application to physiology and medicine

Preface

athematical modelling is now widely adopted in physiology and medicine to support the life scientist and clinical worker. However, good modelling practice must be based upon sound methodology. This is the focus of this book. It builds upon the basic idea of an integrated methodology for the development and testing of mathematical models. It covers many specific areas of methodology where important advances have taken place over recent years and illustrates the application of good methodological practice in key areas of physiology and medicine.

Over the past few decades, several books have been written on mathematical modelling in physiology and medicine. Some have focused on methodology, while others have centred around a specific area of physiology and medicine. Over the past 20 years, we ourselves have contributed extensively to this field, including our volume from the early 1980s entitled Mathematical Modelling of Metabolic and Endocrine Systems: Model Formulation, Identification and Validation, which combined methodological detail with a demonstration of its applicability in relation to metabolics and endocrinology.

This present volume follows suit by combining advances in methodology with demonstrations of its applicability. It is one of two volumes on the theme of modelling included in this Biomedical Engineering series. The other one, which is currently in production, provides an introduction to modelling in physiology. The essence of our other volume is summarized in the first chapter of this book. This book serves as both a stand-alone volume and a complementary work. For the reader who has some experience in modelling, this volume will provide an accessible account of recent advances in the field. For the reader who has absorbed the messages of the introductory volume, the chapters herein build logically upon those insights.

This book has been designed to appeal to all those who wish to advance their knowledge of good modelling practice. It will be useful to postgraduate students and those in the final year of study who have chosen modelling specialties as part of biomedical engineering or medical or health informatics courses. It is equally designed to meet the needs of advanced practitioners and researchers in the field of modelling as it applies to physiology and medicine.

Although formally an edited text, this volume is the collaborative work of two teams in London and Padova who together have extensive experience in communicating these ideas and concepts to a wide range of audiences, including undergraduate and postgraduate students, and researchers and professionals across a spectrum of disciplines from engineering and informatics to medicine and related clinical professions. Hence, this book has been produced as an integrated work, meant as tutorial in style and containing reference listing at the end of the volume.

In writing this volume, we thank those of our colleagues in our teams who have chosen to work with us in this project. Their support and encouragement has been greatly appreciated, and without their efforts, this volume would not exist. We also wish to thank our friends and colleagues who, over many years, have encouraged us to develop our modelling ideas, whether from their perspective as fellow engineers and computer scientists or from their invaluable viewpoint as physiologists and clinicians. There are many that we would wish to recognize including Riccardo Bonadonna, Derek Cramp, Ludwik Finkelstein, Antonio Lepschy, and Peter Sonksen.

Finally, we thank Joseph Bronzino, Editor-In-Chief of this Biomedical Engineering Series, and Joel Claypool, Jane Phelan, and colleagues at Academic Press for their encouragement, support, and tolerance in working with us to see our ideas come to fruition.

Ewart Carson
Claudio Cobelli
London, England and Padova, Italy
July 2000

From the B&N Reads Blog

Customer Reviews