Modelling of Mechanical Systems: Discrete Systems
This first volume is concerned with discrete systems – the study of which constitutes the cornerstone of all mechanical systems, linear or non-linear. It covers the formulation of equations of motion and the systematic study of free and forced vibrations. The book goes into detail about subjects such as generalized coordinates and kinematical conditions; Hamilton's principle and Lagrange equations; linear algebra in N-dimensional linear spaces and the orthogonal basis of natural modes of vibration of conservative systems. Also included are the Laplace transform and forced responses of linear dynamical systems, the Fourier transform and spectral analysis of excitation and response deterministic signals.Forthcoming volumes in this series:Vol II: Structural Elements; to be published in June 2005Vol III: Fluid-structure Interactions; to be published in August 2006Vol IV: Flow-induced Vibrations; to be published in August 2007* Presents the general methods that provide a unified framework to model mathematically mechanical systems of interest to the engineer, analyzing the response of these systems* Focuses on linear problems, but includes some aspects of non-linear configuration* Comprehensive coverage of mathematical techniques used to perform computer-based analytical studies and numerical simulations* Discusses the mathematical techniques used to perform analytical studies and numerical simulations on the computer
1100698040
Modelling of Mechanical Systems: Discrete Systems
This first volume is concerned with discrete systems – the study of which constitutes the cornerstone of all mechanical systems, linear or non-linear. It covers the formulation of equations of motion and the systematic study of free and forced vibrations. The book goes into detail about subjects such as generalized coordinates and kinematical conditions; Hamilton's principle and Lagrange equations; linear algebra in N-dimensional linear spaces and the orthogonal basis of natural modes of vibration of conservative systems. Also included are the Laplace transform and forced responses of linear dynamical systems, the Fourier transform and spectral analysis of excitation and response deterministic signals.Forthcoming volumes in this series:Vol II: Structural Elements; to be published in June 2005Vol III: Fluid-structure Interactions; to be published in August 2006Vol IV: Flow-induced Vibrations; to be published in August 2007* Presents the general methods that provide a unified framework to model mathematically mechanical systems of interest to the engineer, analyzing the response of these systems* Focuses on linear problems, but includes some aspects of non-linear configuration* Comprehensive coverage of mathematical techniques used to perform computer-based analytical studies and numerical simulations* Discusses the mathematical techniques used to perform analytical studies and numerical simulations on the computer
250.0 In Stock
Modelling of Mechanical Systems: Discrete Systems

Modelling of Mechanical Systems: Discrete Systems

by Francois Axisa
Modelling of Mechanical Systems: Discrete Systems

Modelling of Mechanical Systems: Discrete Systems

by Francois Axisa

eBook

$250.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This first volume is concerned with discrete systems – the study of which constitutes the cornerstone of all mechanical systems, linear or non-linear. It covers the formulation of equations of motion and the systematic study of free and forced vibrations. The book goes into detail about subjects such as generalized coordinates and kinematical conditions; Hamilton's principle and Lagrange equations; linear algebra in N-dimensional linear spaces and the orthogonal basis of natural modes of vibration of conservative systems. Also included are the Laplace transform and forced responses of linear dynamical systems, the Fourier transform and spectral analysis of excitation and response deterministic signals.Forthcoming volumes in this series:Vol II: Structural Elements; to be published in June 2005Vol III: Fluid-structure Interactions; to be published in August 2006Vol IV: Flow-induced Vibrations; to be published in August 2007* Presents the general methods that provide a unified framework to model mathematically mechanical systems of interest to the engineer, analyzing the response of these systems* Focuses on linear problems, but includes some aspects of non-linear configuration* Comprehensive coverage of mathematical techniques used to perform computer-based analytical studies and numerical simulations* Discusses the mathematical techniques used to perform analytical studies and numerical simulations on the computer

Product Details

ISBN-13: 9780080511863
Publisher: Butterworth-Heinemann
Publication date: 11/01/2003
Sold by: Barnes & Noble
Format: eBook
Pages: 300
File size: 10 MB

About the Author

François Axisa is Professor of Mechanical Engineering at ENSTA, France, and holds a research post in flow-induced vibration problems at Centre d'Etudes Nucleaires de Saclay, France. He is the author of more than 50 papers on vibrations, damping and associated subjects and has been involved in numerous international conferences and meetings.
François Axisa is Professor of Mechanical Engineering at ENSTA, France, and holds a research post in flow-induced vibration problems at Centre d’Etudes Nucleaires de Saclay, France. He is the author of more than 50 papers on vibrations, damping and associated subjects and has been involved in numerous international conferences and meetings.

Table of Contents

Chapter 1. Mechanical systems and equilibrium of forcesChapter 2. Principle of virtual work and Lagrange's equationsChapter 3. Hamilton's Principle and Lagrange's equations of unconstrained systemsChapter 4. Constrained systems and Lagrange's undetermined multipliersChapter 5. Autonomous oscillatorsChapter 6. Multi-degree-of-freedom systems: natural modes of vibrationChapter 7. Forced vibration: response to transient excitationsChapter 8. Spectral analysis of deterministic time signalsChapter 9. Spectral analysis of forced vibrations
From the B&N Reads Blog

Customer Reviews