More is Different: Fifty Years of Condensed Matter Physics

This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned by his insights. The contributors cover numerous topics under the umbrellas of superconductivity, superfluidity, magnetism, electron localization, strongly interacting electronic systems, heavy fermions, and disorder and frustration in glass and spin-glass systems. They also describe interdisciplinary areas such as the science of olfaction and color vision, the screening of macroions in electrolytes, scaling and renormalization in cosmology, forest fires and the spread of measles, and the investigation of "NP-complete" problems in computer science.


The articles are authored by Philip W. Anderson, Per Bak and Kan Chen, G. Baskaran, Juan Carlos Campuzano, Paul Chaikin, John Hopfield, Bernhard Keimer, Scott Kirkpatrick and Bart Selman, Gabriel Kotliar, Patrick Lee, Yoshiteru Maeno, Marc Mezard, Douglas Osheroff et al., H. R. Ott, L. Pietronero et al., T. V. Ramakrishnan, A. Ramirez, Myriam Sarachik, T. Senthil and Matthew P. A. Fisher, B. I. Shklovskii et al., and F. Steglich et al.

1101640303
More is Different: Fifty Years of Condensed Matter Physics

This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned by his insights. The contributors cover numerous topics under the umbrellas of superconductivity, superfluidity, magnetism, electron localization, strongly interacting electronic systems, heavy fermions, and disorder and frustration in glass and spin-glass systems. They also describe interdisciplinary areas such as the science of olfaction and color vision, the screening of macroions in electrolytes, scaling and renormalization in cosmology, forest fires and the spread of measles, and the investigation of "NP-complete" problems in computer science.


The articles are authored by Philip W. Anderson, Per Bak and Kan Chen, G. Baskaran, Juan Carlos Campuzano, Paul Chaikin, John Hopfield, Bernhard Keimer, Scott Kirkpatrick and Bart Selman, Gabriel Kotliar, Patrick Lee, Yoshiteru Maeno, Marc Mezard, Douglas Osheroff et al., H. R. Ott, L. Pietronero et al., T. V. Ramakrishnan, A. Ramirez, Myriam Sarachik, T. Senthil and Matthew P. A. Fisher, B. I. Shklovskii et al., and F. Steglich et al.

115.0 In Stock
More is Different: Fifty Years of Condensed Matter Physics

More is Different: Fifty Years of Condensed Matter Physics

More is Different: Fifty Years of Condensed Matter Physics

More is Different: Fifty Years of Condensed Matter Physics

eBook

$115.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned by his insights. The contributors cover numerous topics under the umbrellas of superconductivity, superfluidity, magnetism, electron localization, strongly interacting electronic systems, heavy fermions, and disorder and frustration in glass and spin-glass systems. They also describe interdisciplinary areas such as the science of olfaction and color vision, the screening of macroions in electrolytes, scaling and renormalization in cosmology, forest fires and the spread of measles, and the investigation of "NP-complete" problems in computer science.


The articles are authored by Philip W. Anderson, Per Bak and Kan Chen, G. Baskaran, Juan Carlos Campuzano, Paul Chaikin, John Hopfield, Bernhard Keimer, Scott Kirkpatrick and Bart Selman, Gabriel Kotliar, Patrick Lee, Yoshiteru Maeno, Marc Mezard, Douglas Osheroff et al., H. R. Ott, L. Pietronero et al., T. V. Ramakrishnan, A. Ramirez, Myriam Sarachik, T. Senthil and Matthew P. A. Fisher, B. I. Shklovskii et al., and F. Steglich et al.


Product Details

ISBN-13: 9780691219530
Publisher: Princeton University Press
Publication date: 10/06/2020
Series: Princeton Series in Physics , #38
Sold by: Barnes & Noble
Format: eBook
Pages: 368
File size: 19 MB
Note: This product may take a few minutes to download.

About the Author

N.-Phuan Ong is Professor of Physics and Ravin N. Bhatt is Professor of Electrical Engineering at Princeton University. Both are affiliated with the Princeton Materials Institute.

Table of Contents

Explanation of Color Plates vii
Prologue: Aims and Scope of the Book 2
Part I. Introduction to Biological Self-Organization 5
Chapter 1. What Is Self-Organization? 7
Chapter 2. How Self-Organization Works 15
Chapter 3. Characteristics of Self-Organizing Systems 29
Chapter 4. Alternatives to Self-Organization 47
Chapter 5. Why Self-Organization? 63
Chapter 6. Investigation of Self-Organization 69
Chapter 7. Misconceptions about Self-Organization 88
Part II. Case Studies 93
Chapter 8. Pattern Formation in Slime Molds and Bacteria 95
Chapter 9. Feeding Aggregations of Bark Beetles 121
Chapter 10. Synchronized Flashing among Fireflies 143
Chapter 11. Fish Schooling 167
Chapter 12. Nectar Source Selection by Honey Bees 189
Chapter 13. Trail Formation in Ants 217
Chapter 14. The Swarm Raids of Army Ants 257
Chapter 15. Colony Thermoregulation in Honey Bees 285
Chapter 16. Comb Patterns in Honey Bee Colonies 309
Chapter 17. Wall Building by Ants 341
Chapter 18. Termite Mound Building 377
Chapter 19. Construction Algorithms in Wasps 405
Chapter 20. Dominance Hierarchies in Paper Wasps 443
Part III. Conclusions 483 Chapter 21. Lessons, Speculations, and the Future of
Self-Organization 485
Notes 495
References 497
Index 525
From the B&N Reads Blog

Customer Reviews