Multimodal Behavior Analysis in the Wild: Advances and Challenges
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing. - Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios - Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources - Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data
1132568212
Multimodal Behavior Analysis in the Wild: Advances and Challenges
Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing. - Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios - Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources - Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data
175.0 In Stock
Multimodal Behavior Analysis in the Wild: Advances and Challenges

Multimodal Behavior Analysis in the Wild: Advances and Challenges

Multimodal Behavior Analysis in the Wild: Advances and Challenges

Multimodal Behavior Analysis in the Wild: Advances and Challenges

eBook

$175.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Multimodal Behavioral Analysis in the Wild: Advances and Challenges presents the state-of- the-art in behavioral signal processing using different data modalities, with a special focus on identifying the strengths and limitations of current technologies. The book focuses on audio and video modalities, while also emphasizing emerging modalities, such as accelerometer or proximity data. It covers tasks at different levels of complexity, from low level (speaker detection, sensorimotor links, source separation), through middle level (conversational group detection, addresser and addressee identification), and high level (personality and emotion recognition), providing insights on how to exploit inter-level and intra-level links. This is a valuable resource on the state-of-the- art and future research challenges of multi-modal behavioral analysis in the wild. It is suitable for researchers and graduate students in the fields of computer vision, audio processing, pattern recognition, machine learning and social signal processing. - Gives a comprehensive collection of information on the state-of-the-art, limitations, and challenges associated with extracting behavioral cues from real-world scenarios - Presents numerous applications on how different behavioral cues have been successfully extracted from different data sources - Provides a wide variety of methodologies used to extract behavioral cues from multi-modal data

Product Details

ISBN-13: 9780128146026
Publisher: Elsevier Science & Technology Books
Publication date: 11/13/2018
Series: Computer Vision and Pattern Recognition
Sold by: Barnes & Noble
Format: eBook
Pages: 498
File size: 39 MB
Note: This product may take a few minutes to download.

About the Author

Xavier Alameda-Pineda received his PhD from INRIA and University of Grenoble in2013. He was a post-doctoral researcher at CNRS/GIPSA-Lab and at the University of Trento, in the deep relational learning group. He is a research scientist at INRIA working on signal processing and machine learning for scene and behavior understanding using multimodal data. He is the winner of the best paper award of ACM MM 2015, the best student paper award at IEEE WASPAA 2015 and the best scientific paper award on image, speech, signal and video processing at IEEE ICPR 2016. He is member of IEEE and of ACM SIGMM.
Elisa Ricci is a researcher at FBK and an assistant professor at University of Perugia. She received her PhD from the University of Perugia in 2008. She has since been a postdoctoral researcher at Idiap and FBK, Trento and a visiting researcher at University of Bristol. Her research interests are directed along developing machine learning algorithms for video scene analysis, human behaviour understanding and multimedia content analysis. She is area chair of ACM MM 2016 and of ECCV 2016. She received the IBM Best Student Paper Award at ICPR 2014.
Nicu Sebe is a full professor at the University of Trento, Italy, where he is leading the research in the areas of multimedia information retrieval and human behavior understanding. He was a general co-chair of FG 2008 and ACM MM 2013, and a program chair of CIVR 2007 and 2010, of ACM MM 2007 and 2011, and of ECCV 2016. He is a program chair of ICCV 2017 and of ICPR 2020, and a general chair of ICMR 2017. He is a senior member of IEEE and ACM and a fellow of IAPR.

Table of Contents

1. Multimodal open-domain conversations with robotic platforms2. Audio-motor integration for robot audition3. Audio source separation into the wild4. Designing audio-visual tools to support multisensory disabilities5. Audio-visual learning for body-worn cameras6. Activity recognition from visual lifelogs: State of the art and future challenges7. Lifelog retrieval for memory stimulation of people with memory impairment8. Integrating signals for reasoning about visitors' behavior in cultural heritage9. Wearable systems for improving tourist experience10. Recognizing social relationships from an egocentric vision perspective11. Complex conversational scene analysis using wearable sensors12. Detecting conversational groups in images using clustering games13. We are less free than how we think: Regular patterns in nonverbal communication14. Crowd behavior analysis from fixed and moving cameras15. Towards multi-modality invariance: A study in visual representation16. Sentiment concept embedding for visual affect recognition17. Video-based emotion recognition in the wild18. Real-world automatic continuous affect recognition from audiovisual signals19. Affective facial computing: Generalizability across domains20. Automatic recognition of self-reported and perceived emotions

What People are Saying About This

From the Publisher

A must-have title for all those interested in pattern recognition, signal processing, and audio processing

From the B&N Reads Blog

Customer Reviews