ISBN-10:
0123838673
ISBN-13:
9780123838674
Pub. Date:
05/26/2011
Publisher:
Elsevier Science
Pipeline Planning and Construction Field Manual

Pipeline Planning and Construction Field Manual

by E. Shashi Menon

Paperback

View All Available Formats & Editions
Current price is , Original price is $105.0. You
Select a Purchase Option
  • purchase options
    $88.20 $105.00 Save 16% Current price is $88.2, Original price is $105. You Save 16%.
  • purchase options

Product Details

ISBN-13: 9780123838674
Publisher: Elsevier Science
Publication date: 05/26/2011
Pages: 576
Product dimensions: 5.80(w) x 8.90(h) x 1.50(d)

About the Author

E. Shashi Menon, Vice President of SYSTEK Technologies, Inc is a Registered Professional Engineer based in USA for the last 40 years with Bachelors and Masters degrees in Mechanical Engineering. He has extensive experience in Oil and Gas Pipeline Design and construction in USA and South America, having worked for leading US companies. He is the author of several popular technical publications on the subject. He has also coauthored over a dozen software programs in Liquid and Gas Pipeline Hydraulics used by engineers in the industry since 1992. He lives in Lake Havasu City, Arizona

Read an Excerpt

Pipeline Planning and Construction Field Manual


By E. Shashi Menon

Gulf Professional Publishing

Copyright © 2011 Elsevier Inc.
All right reserved.

ISBN: 978-0-12-383854-4


Chapter One

Design Basis

E. Shashi Menon, Ph.D., P.E.

Chapter Outline Introduction 1 1.1 Units of Measurement 2 1.1.1 Base Units 2 1.1.2 Supplementary Units 3 1.1.3 Derived Units 3 1.2 Physical Properties of Liquids and Gases 4 1.2.1 Liquid Properties 5 1.2.2 Gas Properties 19 Summary 40 Bibliography 41

INTRODUCTION

In this chapter, we outline the design basis that forms the foundation for the design of pipelines, pump stations, compressor stations, valves, and other facilities that comprise the pipeline system. The Design Basis Manual or Memorandum (DBM) is a document that is initially developed following discussions between the pipeline owner company and the engineering firm that is responsible for the designing and (in many cases) construction management of the pipeline. This document is continuously revised and updated during the project life. All participants in the project must have access to the DBM so that a consistent documented basis for all aspects of the pipeline will be followed throughout the design and construction of the project.

First, we review the units of measurement used in the pipeline industry. The various units of measurement and calculations used in the United States of America, Canada, and other countries will be discussed and the conversion between the commonly used units explained. Next, we address the physical properties of fluids (liquids and gases) that are transported in the pipeline. Chapters 7–9 will further describe the details of the pipeline design basis by analyzing the major components such as pipes, valves, pumps, compressors, and ancillary equipment. An outline of the various components that constitute a DBM is also provided in Appendix 1.

1.1 UNITS OF MEASUREMENT

The units of measurement employed in the pipeline transportation industry consist mainly of the English or USCS system of units (US Customary System) and the metric or SI (Système International) system of units. USCS units are used exclusively in the United States of America, whereas SI units are used in the countries that use metric units, such as Europe, Asia, Australia, and South America. In Canada and some South American countries, a combination of USCS and SI units are used.

In USCS units, measurements are derived from the old foot-pound-second (FPS) and foot-slug-second (FSS) system that originated in England. The basic units are foot (ft) for length, slug (slug) for mass, and second (s) for measurement of time.

In SI units, the corresponding units for length, mass, and time are meter (m), kilogram (kg), and second (s), respectively. In both USCS and SI units, time has a common unit of second.

Units of measurement are generally divided into three classes as follows:

Base units

Supplementary units

Derived units

Base units are units that are dimensionally independent, such as units of length, mass, time, electric current, temperature, amount of substance, and luminous intensity.

Supplementary units include those used to measure plain angles and solid angles, such as radian and steradian.

Derived units are formed by combining base units, supplementary units, and other derived units. Examples are force, pressure, and energy.

1.1.1 Base Units

In USCS units, the base units are as follows:

Length – foot (ft)

Mass – slug (slug)

Time – second (s)

Electric current – ampere (A)

Temperature – degree Fahrenheit (°F)

Amount of substance – mole (mol)

Luminous intensity – candela (cd)

In SI units, the base units are as follows:

Length – meter (m)

Mass – kilogram (kg)

Time – second (s)

Electric current – ampere (A)

Temperature – Kelvin (K)

Amount of substance – mole (mol)

Luminous intensity – candela (cd)

1.1.2 Supplementary Units

In USCS and SI units, the supplementary units are as follows:

Plain angle – radian (rad)

Solid angle – steradian (sr)

Radian is defined as the plain angle between two radii of a circle with an arc length equal to the radius. Thus, it represents the angle of a sector of a circle with the arc length equal to its radius.

One radian = (180/π) degrees = 57:3 degrees ðdegÞ

Since a circle contains 360 degrees, this is equivalent to

(360/57:3) = 2π radians = 6:28 rad

The steradian is the solid angle having its apex at the center of a sphere such that the area of the surface of the sphere that it cuts out is equal to that of a square with sides equal to the radius of this sphere.

1.1.3 Derived Units

Derived units are those that are formed by combining base units, supplementary units, and other derived units. For example, area and volume are derived units formed by combination of the base unit length. Similarly, velocity (or speed) is derived from the base unit of length and time. It is important to note that numerically velocity and speed are the same, but velocity is a vector quantity, whereas speed is a scalar quantity. A vector has both magnitude and direction, whereas a scalar has only magnitude.

In USCS units, the following derived units are used:

Area – square inches (in2), square feet (ft2)

Volume – cubic inches (in3), cubic feet (ft3), gallons (gal), and barrels (bbl)

Speed/velocity – feet per second (ft/s)

Acceleration – feet per second per second (ft/s2)

Density – slug per cubic foot (slug/ft3)

Specific weight – pound per cubic foot (lb/ft3)

Specific volume – cubic feet per pound (ft3/lb)

Dynamic viscosity – pound second per square foot (lb·s/ft2)

Kinematic viscosity – square feet per second (ft2/s)

Force – pounds (lb)

Pressure – pounds per square inch (lb/in2 or psi)

Energy/work – foot pound (ft·lb)

Quantity of heat – British Thermal Units (Btu)

Power – Horsepower (HP)

Specific heat – Btu per pound per °F (Btu/lb/°F)

Thermal conductivity – Btu per hour per foot per °F (Btu/h/ft/°F)

In SI units, the derived units are as follows:

Area – square meters (m2)

Volume – cubic meters (m3)

Speed/velocity – meter per second (m/s)

Acceleration – meter per second per second (m/s2)

Density – kilogram per cubic meter (kg/m3)

Specific volume – cubic meters per kilogram (m3/kg)

Force – Newton (N)

Pressure – Newton per square meter (N/m2) or Pascal (Pa)

Dynamic viscosity – Pascal second (Pa·s)

Kinematic viscosity – square meters per second (m2/s)

Energy/work – Newton meter (N·m) or joule (J)

Quantity of heat – joule (J)

Power – joule per second (J/s) or watt (W)

Specific heat – joule per kilogram per Kelvin (J/kg/K)

Thermal conductivity – joule per second per meter per Kelvin (J/s/m/K) or (W/m/K)

Other derived units used in USCS and SI units and the conversion between various units are listed in Appendix 1.

1.2 PHYSICAL PROPERTIES OF LIQUIDS AND GASES

Since pipelines are used to transport liquids or gases (collectively referred to as fluids), we discuss some important physical properties of fluids that affect pipeline transportation. In liquid pipelines, these include specific gravity, viscosity, specific heat, bulk modulus, and vapor pressure. In compressible fluids, such as natural gas pipelines, the important properties are specific gravity, viscosity, molecular composition, heating value, specific heat, and the compressibility factor. These physical properties and how they are calculated including methods between various units will be illustrated using examples. The variation of these properties with the temperature and pressure of the fluid is important in both liquid and gas pipelines. In heavy crude oil pipelines, sometimes, the crude oil is heated to reduce viscosity and thus improve pumpability. This, in turn, reduces power requirements and hence cost of transportation. Therefore, the variation in viscosity and gravity with temperature become very important. Sometimes, a low-viscosity product (such as a diluent or light crude oil) is blended with a heavy crude oil to reduce the viscosity and enhance pumpability. We explain the methods commonly used to determine the blended properties of two or more liquids. Similarly for gases, knowing the molecular composition of individual gases, we explain the method of calculating the composition of the gas mixture and the corresponding gravity and viscosity.

This chapter forms the foundation for all calculations for designing and planning the pipelines used to transport liquids and gases. These include pressure drop due to friction in pipes, valves, and fittings, as well as pump and compressor power requirements, all of which will be addressed in Chapters 8 through 12. In Appendix 1, tables are included listing physical properties of commonly transported liquids and gases such as water, refined petroleum products, crude oils, and natural gas.

1.2.1 Liquid Properties

Mass, Weight, Volume, and Density

For both liquids and gases, mass, weight, volume, and density are discussed in this section and the related terms specific volume and specific weight are also explained.

Mass is defined as the quantity of matter in a substance and it does not vary with temperature or pressure. It is a scalar quantity and hence has magnitude but no direction, compared to a vector quantity that has both magnitude and direction. Mass is measured in slug (slug) in USCS units and kilograms (kg) in SI units. The term weight depends on the mass and acceleration due to gravity at a particular location and is a vector quantity. Weight is actually the force acting on a mass and hence is a derived unit. In USCS units, weight is stated in pounds (lb) and in SI units it is measured in Newton (N). The quantity of liquid contained in a storage tank may be referred to as 5000 lb weight. This is sometimes referred to incorrectly as 5000 lb mass of liquid. The correct term would be to say the mass of liquid contained in the tank is 5000/32.17 = 155.4 slug. The factor 32.17 represents the acceleration due to gravity (32.17 ft/s2). This is based on Newton's second law of motion, represented by the following relationship:

Force = mass × acceleration (1.1)

Since force has the units of lb, from Eq. (1.1) it is clear that slug has the units of lb·s2/ft.

Similarly, in SI units, if a storage tank contains 170 kg of crude oil, this is the mass of the crude oil. Its weight in Newton is 170 × 9:81 = 1667:7 N.

The factor 9.81 is the acceleration due to gravity (9.81 m/s2) in SI units. However, in common usage we tend to say (incorrectly) that the weight of crude oil in the tank is 170 kg.

Volume is defined as the space occupied by a given mass. In the case of a liquid in a tank, the liquid fills the tank up to a certain height. In comparison, a compressible fluid such as natural gas will fill an entire sphere or bullet used as a storage vessel. Thus, gas expands to fill its container. Consider a cylindrical storage tank for gasoline, if the inside diameter of the tank is 100 ft, the crosssectional area is

A = (π/4) × (100)2 = 7854 ft2

If the liquid level in the tank is 20 ft, the volume of gasoline contained in the tank is given by

V = A × height = 7854 × 20 = 157,080 ft3

In USCS units, the volume of a liquid may be stated in cubic feet (ft3), gallons (gal) or barrels (bbl). In the US petroleum industry, a barrel and a gallon are defined as follows:

1 bbl = 42 US gal 1 US gal = 231 in3

The imperial gallon, used in Canada and the United Kingdom, is 20% larger than the US gallon.

In SI units, liquid or gas volume is stated in cubic meters (m3) or liters (L). These are related to each other and the US gallon as follows:

1 m3 = 1000 L 1 US gal = 3:785 L

Also the USCS and SI units for volume are related as follows:

1 m3 = 35:32 ft3 1 bbl = 0:159 m3 = 158:97 L

(Continues...)



Excerpted from Pipeline Planning and Construction Field Manual by E. Shashi Menon Copyright © 2011 by Elsevier Inc.. Excerpted by permission of Gulf Professional Publishing. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

1. Design Basis 2. Route Selection 3. Alignment Sheets 4. Wall Thickness Definition 5. Pipeline Analyses 6. Pipeline End Expansion Analysis 7. Tie-In Spool Expansion Spool and Riser Design 8. Corrosion Protection 9. Specification Writing, Data Sheet Production, Requisition Development & Bid Analysis of Associated Materials and Valves 10. Installation Studies

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews