Practical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python

Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks.
Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level.
As you learn the language of discrete mathematics, you’ll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you’ll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science.
By the end of this book, you’ll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning.

1138743338
Practical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python

Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks.
Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level.
As you learn the language of discrete mathematics, you’ll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you’ll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science.
By the end of this book, you’ll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning.

45.99 In Stock
Practical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python

Practical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python

Practical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python

Practical Discrete Mathematics: Discover math principles that fuel algorithms for computer science and machine learning with Python

eBook

$45.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Discrete mathematics deals with studying countable, distinct elements, and its principles are widely used in building algorithms for computer science and data science. The knowledge of discrete math concepts will help you understand the algorithms, binary, and general mathematics that sit at the core of data-driven tasks.
Practical Discrete Mathematics is a comprehensive introduction for those who are new to the mathematics of countable objects. This book will help you get up to speed with using discrete math principles to take your computer science skills to a more advanced level.
As you learn the language of discrete mathematics, you’ll also cover methods crucial to studying and describing computer science and machine learning objects and algorithms. The chapters that follow will guide you through how memory and CPUs work. In addition to this, you’ll understand how to analyze data for useful patterns, before finally exploring how to apply math concepts in network routing, web searching, and data science.
By the end of this book, you’ll have a deeper understanding of discrete math and its applications in computer science, and be ready to work on real-world algorithm development and machine learning.


Product Details

ISBN-13: 9781838983505
Publisher: Packt Publishing
Publication date: 02/22/2021
Sold by: Barnes & Noble
Format: eBook
Pages: 330
File size: 7 MB

About the Author

Ryan T. White, Ph.D. is a mathematician, researcher, and consultant with expertise in machine learning and probability theory along with private-sector experience in algorithm development and data science. Dr. White is an assistant professor of mathematics at Florida Institute of Technology, where he leads an active academic research program centered on stochastic analysis and related algorithms, heads private-sector projects in machine learning, participates in numerous scientific and engineering research projects, and teaches courses in machine learning, neural networks, probability, and statistics at the undergraduate and graduate levels.


Archana Tikayat Ray is a Ph.D. student at Georgia Institute of Technology, Atlanta, where her research work is focused on machine learning and Natural Language Processing (NLP) applications. She has a master's degree from Georgia Tech as well, and a bachelor's degree in aerospace engineering from Florida Institute of Technology.

Table of Contents

  1. Key Concepts, Notation, Set Theory, Relations, and Functions
  2. Formal Logic and Constructing Mathematical Proofs
  3. Computing with Base-n Numbers
  4. Combinatorics Using SciPy
  5. Elements of Discrete Probability
  6. Computational Algorithms in Linear Algebra
  7. Computational Requirements for Algorithms
  8. Storage and Feature Extraction of Graphs, Trees, and Networks
  9. Searching Data Structures and Finding Shortest Paths
  10. Regression Analysis with NumPy and Scikit-Learn
  11. Web Searches with PageRank
  12. Principal Component Analysis with Scikit-Learn
From the B&N Reads Blog

Customer Reviews