Principles of Computational Modelling in Neuroscience
The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signalling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modelling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.
1100958836
Principles of Computational Modelling in Neuroscience
The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signalling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modelling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.
81.99 In Stock
Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience

eBook

$81.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signalling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modelling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.

Product Details

ISBN-13: 9781139036320
Publisher: Cambridge University Press
Publication date: 06/30/2011
Sold by: Barnes & Noble
Format: eBook
File size: 13 MB
Note: This product may take a few minutes to download.

About the Author

David Sterratt is a Research Fellow in the School of Informatics at the University of Edinburgh. His computational neuroscience research interests include models of learning and forgetting, and the formation of connections within the developing nervous system.
Bruce Graham is a Reader in Computing Science in the Department of Computing Science and Mathematics at the University of Stirling. Focusing on computational neuroscience, his research covers nervous system modelling at many levels.
Andrew Gillies works at Psymetrix Limited, Edinburgh. He has been actively involved in computational neuroscience research.
David Willshaw is Professor of Computational Neurobiology in the School of Informatics at the University of Edinburgh. His research focuses on the application of methods of computational neurobiology to an understanding of the development and functioning of the nervous system.

Table of Contents

Preface; 1. Introduction; 2. The basis of electrical activity in the neuron; 3. The Hodgkin Huxley model of the action potential; 4. Compartmental models; 5. Models of active ion channels; 6. Intracellular mechanisms; 7. The synapse; 8. Simplified models of neurons; 9. Networks; 10. The development of the nervous system; Appendix A. Resources; Appendix B. Mathematical methods; References.
From the B&N Reads Blog

Customer Reviews