Regression Modeling with Actuarial and Financial Applications
This text gives budding actuaries and financial analysts a foundation in multiple regression and time series. They will learn about these statistical techniques using data on the demand for insurance, lottery sales, foreign exchange rates, and other applications. Although no specific knowledge of risk management or finance is presumed, the approach introduces applications in which statistical techniques can be used to analyze real data of interest. In addition to the fundamentals, this book describes several advanced statistical topics that are particularly relevant to actuarial and financial practice, including the analysis of longitudinal, two-part (frequency/severity), and fat-tailed data. Datasets with detailed descriptions, sample statistical software scripts in 'R' and 'SAS', and tips on writing a statistical report, including sample projects, can be found on the book's Web site: http://research.bus.wisc.edu/RegActuaries.
1100957349
Regression Modeling with Actuarial and Financial Applications
This text gives budding actuaries and financial analysts a foundation in multiple regression and time series. They will learn about these statistical techniques using data on the demand for insurance, lottery sales, foreign exchange rates, and other applications. Although no specific knowledge of risk management or finance is presumed, the approach introduces applications in which statistical techniques can be used to analyze real data of interest. In addition to the fundamentals, this book describes several advanced statistical topics that are particularly relevant to actuarial and financial practice, including the analysis of longitudinal, two-part (frequency/severity), and fat-tailed data. Datasets with detailed descriptions, sample statistical software scripts in 'R' and 'SAS', and tips on writing a statistical report, including sample projects, can be found on the book's Web site: http://research.bus.wisc.edu/RegActuaries.
79.99 In Stock
Regression Modeling with Actuarial and Financial Applications

Regression Modeling with Actuarial and Financial Applications

by Edward W. Frees
Regression Modeling with Actuarial and Financial Applications

Regression Modeling with Actuarial and Financial Applications

by Edward W. Frees

eBook

$79.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers

LEND ME® See Details

Overview

This text gives budding actuaries and financial analysts a foundation in multiple regression and time series. They will learn about these statistical techniques using data on the demand for insurance, lottery sales, foreign exchange rates, and other applications. Although no specific knowledge of risk management or finance is presumed, the approach introduces applications in which statistical techniques can be used to analyze real data of interest. In addition to the fundamentals, this book describes several advanced statistical topics that are particularly relevant to actuarial and financial practice, including the analysis of longitudinal, two-part (frequency/severity), and fat-tailed data. Datasets with detailed descriptions, sample statistical software scripts in 'R' and 'SAS', and tips on writing a statistical report, including sample projects, can be found on the book's Web site: http://research.bus.wisc.edu/RegActuaries.

Product Details

ISBN-13: 9781107713352
Publisher: Cambridge University Press
Publication date: 11/30/2009
Series: International Series on Actuarial Science
Sold by: Barnes & Noble
Format: eBook
File size: 25 MB
Note: This product may take a few minutes to download.

About the Author

Edward W. (Jed) Frees is a Professor of Business at the University of Wisconsin, Madison and is holder of the Assurant Health Insurance Professorship of Actuarial Science. He is a Fellow of both the Society of Actuaries (SoA) and the American Statistical Association (ASA). Professor Frees is the author of Longitudinal and Panel Data (2004) and has published more than fifty articles in leading refereed academic journals.

Table of Contents

1. Regression and the normal distribution; Part I. Linear Regression: 2. Basic linear regression; 3. Multiple linear regression - I; 4. Multiple linear regression - II; 5. Variable selection; 6. Interpreting regression results; Part II. Topics in Time Series: 7. Modeling trends; 8. Autocorrelations and autoregressive models; 9. Forecasting and time series models; 10. Longitudinal and panel data models; Part III. Topics in Nonlinear Regression: 11. Categorical dependent variables; 12. Count dependent variables; 13. Generalized linear models; 14. Survival models; 15. Miscellaneous regression topics; Part IV. Actuarial Applications: 16. Frequency-severity models; 17. Fat-tailed regression models; 18. Credibility and bonus-malus; 19. Claims triangles; 20. Report writing: communicating data analysis results; 21. Designing effective graphs; Appendix 1: basic statistical inference; Appendix 2: matrix algebra; Appendix 3: probability tables.
From the B&N Reads Blog

Customer Reviews