Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries




Key Features



  • Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks


  • Understand and develop model-free and model-based algorithms for building self-learning agents


  • Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies



Book Description



Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.






Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.






By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.





What you will learn



  • Develop an agent to play CartPole using the OpenAI Gym interface


  • Discover the model-based reinforcement learning paradigm


  • Solve the Frozen Lake problem with dynamic programming


  • Explore Q-learning and SARSA with a view to playing a taxi game


  • Apply Deep Q-Networks (DQNs) to Atari games using Gym


  • Study policy gradient algorithms, including Actor-Critic and REINFORCE


  • Understand and apply PPO and TRPO in continuous locomotion environments


  • Get to grips with evolution strategies for solving the lunar lander problem



Who this book is for



If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.

1134211385
Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries




Key Features



  • Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks


  • Understand and develop model-free and model-based algorithms for building self-learning agents


  • Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies



Book Description



Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.






Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.






By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.





What you will learn



  • Develop an agent to play CartPole using the OpenAI Gym interface


  • Discover the model-based reinforcement learning paradigm


  • Solve the Frozen Lake problem with dynamic programming


  • Explore Q-learning and SARSA with a view to playing a taxi game


  • Apply Deep Q-Networks (DQNs) to Atari games using Gym


  • Study policy gradient algorithms, including Actor-Critic and REINFORCE


  • Understand and apply PPO and TRPO in continuous locomotion environments


  • Get to grips with evolution strategies for solving the lunar lander problem



Who this book is for



If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.

26.99 In Stock
Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

by Andrea Lonza
Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

Reinforcement Learning Algorithms with Python: Learn, understand, and develop smart algorithms for addressing AI challenges

by Andrea Lonza

eBook

$26.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Develop self-learning algorithms and agents using TensorFlow and other Python tools, frameworks, and libraries




Key Features



  • Learn, develop, and deploy advanced reinforcement learning algorithms to solve a variety of tasks


  • Understand and develop model-free and model-based algorithms for building self-learning agents


  • Work with advanced Reinforcement Learning concepts and algorithms such as imitation learning and evolution strategies



Book Description



Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents.






Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS.






By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.





What you will learn



  • Develop an agent to play CartPole using the OpenAI Gym interface


  • Discover the model-based reinforcement learning paradigm


  • Solve the Frozen Lake problem with dynamic programming


  • Explore Q-learning and SARSA with a view to playing a taxi game


  • Apply Deep Q-Networks (DQNs) to Atari games using Gym


  • Study policy gradient algorithms, including Actor-Critic and REINFORCE


  • Understand and apply PPO and TRPO in continuous locomotion environments


  • Get to grips with evolution strategies for solving the lunar lander problem



Who this book is for



If you are an AI researcher, deep learning user, or anyone who wants to learn reinforcement learning from scratch, this book is for you. You'll also find this reinforcement learning book useful if you want to learn about the advancements in the field. Working knowledge of Python is necessary.


Product Details

ISBN-13: 9781789139709
Publisher: Packt Publishing
Publication date: 10/18/2019
Sold by: Barnes & Noble
Format: eBook
Pages: 366
File size: 30 MB
Note: This product may take a few minutes to download.

About the Author

Andrea Lonza is a deep learning engineer with a great passion for artificial intelligence and a desire to create machines that act intelligently. He has acquired expert knowledge in reinforcement learning, natural language processing, and computer vision through academic and industrial machine learning projects. He has also participated in several Kaggle competitions, achieving high results. He is always looking for compelling challenges and loves to prove himself.

Table of Contents

Table of Contents
  1. The Landscape of Reinforcement Learning
  2. Implementing RL Cycle and OpenAI Gym
  3. Solving Problems with Dynamic Programming
  4. Q learning and SARSA Applications
  5. Deep Q-Network
  6. Learning Stochastic and DDPG optimization
  7. TRPO and PPO implementation
  8. DDPG and TD3 Applications
  9. Model-Based RL
  10. Imitation Learning with the DAgger Algorithm
  11. Understanding Black-Box Optimization Algorithms
  12. Developing the ESBAS Algorithm
  13. Practical Implementation for Resolving RL Challenges
From the B&N Reads Blog

Customer Reviews