Robust Recognition via Information Theoretic Learning

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.

The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.

1133130000
Robust Recognition via Information Theoretic Learning

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.

The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.

54.99 In Stock
Robust Recognition via Information Theoretic Learning

Robust Recognition via Information Theoretic Learning

Robust Recognition via Information Theoretic Learning

Robust Recognition via Information Theoretic Learning

eBook2014 (2014)

$54.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.

The authors resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency, the brief introduces the additive and multiplicative forms of half-quadratic optimization to efficiently minimize entropy problems and a two-stage sparse presentation framework for large scale recognition problems. It also describes the strengths and deficiencies of different robust measures in solving robust recognition problems.


Product Details

ISBN-13: 9783319074160
Publisher: Springer-Verlag New York, LLC
Publication date: 08/28/2014
Series: SpringerBriefs in Computer Science
Sold by: Barnes & Noble
Format: eBook
Pages: 110
File size: 2 MB

Table of Contents

Introduction.- M-estimators and Half-quadratic Minimization.- Information Measures.- Correntropy and Linear Representation.- ℓ1 Regularized Correntropy.- Correntropy with Nonnegative Constraint.
From the B&N Reads Blog

Customer Reviews